吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 973-980.doi: 10.13229/j.cnki.jdxbgxb201703039

• • 上一篇    下一篇

基于线性收缩的大阵列MIMO雷达目标盲检测

姜宏, 李垠, 吕巍   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2016-04-21 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:姜宏(1966-),女,教授,博士生导师.研究方向:阵列信号处理,信号检测与估计.E-mail:jiangh@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61371158)

Linear shrinkage-based blind target detection for MIMO radar with large arrys

JIANG Hong, LI Yin, LYU Wei   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2016-04-21 Online:2017-05-20 Published:2017-05-20

摘要: 针对阵元数与快拍数可以相比拟的大阵列MIMO雷达系统,将协方差矩阵估计的收缩算法与大维随机矩阵理论相结合,提出了一种基于线性收缩-标准条件数(LS-SCN)的目标盲检测新方法。通过求解大维系统样本协方差矩阵的优化矩阵,并利用M-P律,推导了检测阈值与收缩系数之间的关系,分别给出了基于LS-SCN的单目标和多目标检测算法。该方法无需已知噪声方差、目标散射矩阵和目标方位等先验信息,对噪声变化不敏感,且适用于大阵列系统。仿真结果表明,在阵元数与快拍数在同一数量级的情况下,与SCN算法和MDL算法相比,显著提高了目标检测性能。

关键词: 通信技术, 雷达工程, 目标检测, 大维随机矩阵理论, 收缩算法, 大阵列

Abstract: Aiming at Multiple Input Multiple Output (MIMO) radar system with large arrays, in which the number of arrays is comparable to the number of snapshots, a blind target detection method based on Linear Shrinkage-Standard Condition Number (LS-SCN) is proposed by combining the shrinkage algorithm of Covariance Matrix estimation and the large dimensional random matrix theory. By solving the optimization of the sample CM in the large dimensional regime and utilizing the M-P law, the relationship between the detection threshold and the shrinkage coefficient is derived. Single-target and multi-target detection algorithms based on LS-SCN are presented respectively. The method is not sensitive to noise changes and is suitable for large array system, which do not need to know the priori information of noise variance, target scattering matrix and target location. Simulation results show that, compared with SCN algorithm and Minimum Description Length (MDL) algorithm, the proposed methods significantly improve the performance of target detection under the circumstance that the numbers of arrays and snapshots grow at the same rate.

Key words: communications, radar engineering, target detection, large-dimensional random matrix theory, shrinkage algorithm, large arrays

中图分类号: 

  • TN911.23
[1] Fishler E, Haimovich A, Blum R, et al. MIMO radar:an idea whose time has come[C]∥Proc IEEE Radar Conference, Philadelphia, Pennsylvania, USA, 2004: 71-78.
[2] 陈浩文, 黎湘, 庄钊文. 一种新型的雷达体制-MIMO雷达[J]. 电子学报, 2012, 40(6): 1190-1198.
Chen Hao-wen, Li Xiang, Zhuang Zhao-wen. A rising radar system-MIMO radar[J]. Acta Electronica Sinica, 2012, 40 (6): 1190-1198.
[3] 肖文书. MIMO雷达中的信号检测[J]. 电子学报, 2010, 38(3): 626-631.
Xiao Wen-shu. Model of signal detection for MIMO radar[J]. Acta Electronica Sinica, 2010, 38(3): 626-631.
[4] Ding J, Chen H W, Wang H, et al. Low-grazing angle target detection and system configuration of MIMO radar[J]. Progress in Electromagnetics Research B, 2013, 48: 23-42.
[5] 关键, 黄勇. MIMO雷达多目标检测前跟踪算法研究[J]. 电子学报, 2010, 38(6): 1449-1453.
Guan Jian, Huang Yong. Track-before-detect algorithm in a MIMO radar multi-target environment[J]. Acta Electronica Sinica, 2010, 38 (6): 1449-1453.
[6] Wang P, Li H, Himed B. A parametric moving target detector for distributed MIMO radar in non-homogeneous environment[J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2282-2294.
[7] Anitor L, Maleki A, Otten M, et al. Design and analysis of compressed sensing radar detectors[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 813-827.
[8] Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with large arrays[J]. IEEE Signal Processing Magazine, 2013, 30 (1): 40-60.
[9] Couillet R, Pascal F, Silverstein J W. Robust estimates of covariance matrices in the large dimensional regime[J]. IEEE Transaction on Information Theory, 2014, 60(11): 7269-7278.
[10] Lancewicki T, Aladjem M. Multi-target shrinkage estimation for covariance matrices[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6380-6390.
[11] Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices[J]. J Multivar Anal, 2004, 88(2): 365-411.
[12] Walden A T, Schneider-Luftman D. Random matrix derived shrinkage of spectral precision matrices[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4689-4699.
[13] Huang L, So H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4806-4821.
[14] Pascal F, Chitour Y, Quek Y. Generalized robust shrinkage estimator and its application to STAP detection problem[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5640-5651.
[15] Guhr T, Groeling A M, Weidenmuller H. Random matrix theories in quantum physics: common concepts[J]. Physics Reports, 1998,299(4):189-425.
[16] Bouchaud J P, Potters M. Theory of Financial Risks-from Statistical Physics to Risk Management[M]. Cambridge: Cambridge University Press, 2000.
[17] Bai Z D, Fang Z B, Liang Y C. Spectral Theory of Large Dimensional Random Matrices and Its applications to Wireless Communications and Fiance Statistics[M]. Hefei: University of Science and Technology of China Press, 2009:1-20.
[18] Bai Z D, Jack W Silverstein. Spectral Analysis of Large Dimensional Random Matrices[M]. 2nd ed. Beijing: Science Press, 2010.
[19] 王磊, 郑宝玉, 李雷. 基于随机矩阵理论的协作频谱感知[J]. 电子与信息学报, 2009, 31(8): 1925-1929.
Wang Lei, Zheng Bao-yu, Li Lei. Cooperative spectrum sensing based on random matrix theory[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1925-1929.
[20] Chatzinotas S, Sharma S K, Ottersten B. Asymptotic analysis of eigenvalue-based blind Spectrum Sensing techniques[C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013: 4464-4468.
[21] Jiang H, Tang X, Lyu W, et al. Blind multi-target detection for bistatic MIMO radar based on random matrix theory[C]∥The 3rd IEEE China Summit & International Conference on Signal Information Processing (ChinaSIP2015), Chengdu, China, 2015: 1047-1051.
[22] Chen Y, Wiesel A, Eldar Y C, et al. Shrinkage algorithms for MMSE covariance estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5016-5029.
[23] 兰星, 李伟, 颜佳冰,等. 部分发射天线损毁时MIMO雷达信号认知优化[J]. 重庆邮电大学学报:自然科学版, 2016, 28(2):168-173.
Lan Xing,Li Wei,Yan Jia-bing,et al.Cognitive optimization for MIMO radar signal with part of transmitting antennas damaged[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2016, 28(2):168-173.
[24] Couillet R, Debbah M. Random Matrix Methods for Wireless Communications[M]. Cambridge: Cambridge University Press, 2011.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[3] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[4] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[6] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[7] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[8] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[9] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[10] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!