吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1253-1261.doi: 10.13229/j.cnki.jdxbgxb201704034

• 论文 • 上一篇    下一篇

混流装配线准时化物料配送调度优化

周炳海, 彭涛   

  1. 同济大学 机械与能源工程学院,上海 201804
  • 收稿日期:2016-05-23 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:周炳海(1965-),男,教授,博士生导师.研究方向:离散系统建模、调度与仿真.E-mail:bhzhou@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(71471135,61273035).

Optimal schedule of just-in-time part distribution for mixed-model assembly lines

ZHOU Bing-hai, PENG Tao   

  1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China
  • Received:2016-05-23 Online:2017-07-20 Published:2017-07-20

摘要: 针对混流装配线的准时化物料配送问题,综合考虑搬运设备的运载能力和装配线不允许缺货约束,构建了车辆装载与路径规划的联合优化模型。首先,进行了问题域的描述,并以最小化物料搬运期间所有工位中的最大加权库存水平为目标建立了数学规划模型。其次,结合该调度问题的两条基本性质,提出了回溯搜索算法以获得小规模问题的精确解。此外,为了有效地应对中大规模问题的爆炸搜索空间,构建了改进型离散人工蜂群算法。该算法通过在邻域变换中融入局部搜索和差分进化操作以提升其收敛性能。最后进行了仿真实验,结果验证了准时化配送模型及调度算法的可行性、有效性。

关键词: 人工智能, 混流装配线, 回溯法, 人工蜂群算法

Abstract: For Just-in-Time (JIT) part distribution problem in Mixed-Model Assembly Lines (MMALs), an integrated vehicle filling and routing scheduling model is presented with consideration of loading capacities and no sock-outs constraints of assembly lines. First, a scheduling problem domain is described and then the mathematical programming model is developed with an objective to minimize the maximum weighted inventory level in all stations and production cycles. Second, the backtracking method is established to optimally solve small-scale instances based on two properties of the proposed scheduling model. Third, a Modified Discrete Artificial Bee Colony (MDABC) algorithm is introduced to cope with the exploding search space of medium- and large-scale instances. Both local search and differential evolution operations are employed for neighbor search, which improves the convergence performance of the modified metaheuristic effectively. Finally, simulations are carried out and the experiment results verify the feasibility and effectiveness of the proposed JIT distribution model and methods.

Key words: artificial intelligence, mixed-model assembly lines, backtracking, artificial bee colony

中图分类号: 

  • TP18
[1] Choi W, Lee Y. A dynamic part-feeding system for an automotive assembly line[J]. Computers & Industrial Engineering, 2002, 43(1/2):123-134.
[2] Battini D, Boysen N, Emde S. Just-in-time supermarkets for part supply in the automobile industry[J]. Journal of Management Control, 2013, 24(2):209-217.
[3] Boysen N, Emde S, Hoeck M, et al. Part logistics in the automotive industry: decision problems, literature review and research agenda[J]. European Journal of Operational Research, 2014, 242(1):107-120.
[4] Emde Simon, Fliedner Malte, Boysen Nils. Optimally loading tow trains for just-in-time supply of mixed-model assembly lines[J]. IIE Transactions, 2012, 44(2):121-135.
[5] Emde S, Boysen N. Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines[J]. European Journal of Operational Research, 2012, 217(2):287-299.
[6] Fathi M, Rodríguez V, Alvarez M J. A novel memetic ant colony optimization-based heuristic algorithm for solving the assembly line part feeding problem[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(4):629-643.
[7] Manzini R. New Kanban model for tow-train feeding system design[J]. Assembly Automation, 2015, 35(1):128-136.
[8] Boysen N, Bock S. Scheduling just-in-time part supply for mixed-model assembly lines[J]. European Journal of Operational Research, 2011, 211(1):15-25.
[9] Lin L, Shinn S W, Gen M, et al. Network model and effective evolutionary approach for AGV dispatching in manufacturing system[J]. Journal of Intelligent Manufacturing, 2006, 17(4):465-477.
[10] Eksioglu B, Vural A V, Reisman A. The vehicle routing problem: a taxonomic review[J]. Computers & Industrial Engineering, 2009, 57(4):1472-1483.
[11] Archetti C, Bertazzi L, Hertz A, et al. A hybrid heuristic for an inventory-routing problem[J]. Informs Journal on Computing, 2012, 24(1):101-116.
[12] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics & Computation, 2009, 214(1):108-132.
[13] Baker B M, Ayechew M A. A genetic algorithm for the vehicle routing problem[J]. Computers & Operations Research, 2003, 30(5):787-800.
[14] Alfa A S, Heragu S S, Chen M. A 3-OPT based simulated annealing algorithm for vehicle routing problems[J]. Computers & Industrial Engineering, 1991, 21(4):635-639.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!