吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1933-1938.doi: 10.13229/j.cnki.jdxbgxb201706035

• 论文 • 上一篇    下一篇

基于可信平台模块的能源互联网新型统一安全架构

栾文鹏1, 刘永磊2, 王鹏3, 金志刚2, 王健2   

  1. 1.中国电力科学研究院 配电研究所,北京 100192;
    2.天津大学 电子信息工程学院,天津 300072;
    3.华北电力大学 电气与电子工程学院,北京 102206
  • 收稿日期:2016-07-01 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 刘永磊(1983-),男,在站博士后,讲师.研究方向:无线网络安全.E-mail:liuyonglei@tcu.edu.cn
  • 作者简介:栾文鹏(1962-),男,教授级高级工程师,博士生导师.研究方向:电力系统自动化,智能电网.E-mail:w1213@epri.sgcc.com.cn
  • 基金资助:
    国家电网公司科技项目(5442PD130014); 国家自然科学基金项目(61571318); 中国博士后科学基金项目(2016M601265)

Novel universal security mechanism for energy internet based on trusted platform module

LUAN Wen-peng1, LIU Yong-lei2, WANG Peng3, JIN Zhi-gang2, WANG Jian2   

  1. 1.Institute of Power Distribution,China Electric Power Research Institute,Beijing 100192,China;
    2. School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China;
    3. School of Electrical & Electronic Engineering,North China Electric Power University,Beijing 102206,China
  • Received:2016-07-01 Online:2017-11-20 Published:2017-11-20

摘要: 从逻辑和拓扑两个层面对能源互联网的网络体系结构进行了分析,并且将现有能源互联网安全研究归类为安全需求驱动法、安全模型法和系统论方法,采用逼近理想解排序法(TOPSIS)对现有安全防护方法进行分析和比较。针对已有安全机制普遍存在的孤立性和欠缺整体统一方案的问题,提出了基于可信平台模块(TPM)的能源互联网统一安全架构。给出了该方案的安全模型和典型的消费层通信协议并进行了安全性分析。结果表明:新的安全架构能够很好地满足安全需求,有利于安全、可靠地大规模应用能源物联网技术。

关键词: 通信技术, 能源互联网, 可信平台模块, 安全机制, 逼近理想解排序法, 可信计算

Abstract: As the core infrastructure for the efficient and secure utilization of renewable energy sources, the energy internet is the important strategic resource and embodiment of the comprehensive national strength. The security of energy internet has attracted more serious attentions. In this work, first, the structure of internet was analyzed from logical and network topological structure aspects. Second, the existing research methods are classified into three classes, the security demand-driven method, security model-driven method and the system-theoretical method; and the existing researches are analyzed and compared using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Finally, to solve the problem of vulnerability of isolation and lack of integrated solution in existing security mechanism, a new security mechanism based on Trusted Platform Module (TPM) is proposed. The security model and consuming layer protocol are put forward and security analysis is carried out. The results show that the proposed security mechanism can satisfy the security requirements of the energy internet.

Key words: communication, energy internet, trust platform module(TPM), security mechanism, technique for order preference by similarity to ideal solution(TOPSIS), trustworthy computing

中图分类号: 

  • TM711
[1] Rifkin J. The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the Word[M]. New York:Palgrave Macmillan,2011.
[2] 董朝阳,赵俊华,文福拴,等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化,2014,38(15):1-11.
Dong Zhao-yang,Zhao Jun-hua,Wen Fu-shuan,et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems,2014,38(15):1-11.
[3] 王继业,孟坤,曹军威,等. 能源互联网信息技术研究综述[J]. 计算机研究与发展,2015,52(5):1109-1126.
Wang Ji-ye,Meng Kun,Cao Jun-wei,et al. Information technology for energy internet: a survey[J]. Journal of Computer Research and Development,2015,52(5):1109-1126.
[4] Bui N,Castellani A P,Casari P,et al. The internet of energy:a web-enabled smart grid system[J]. IEEE Network,2012,52(5):1109-1126.
[5] 杜君,李伟华. 面向多跳无线自组织网络的安全信任模型[J]. 吉林大学学报:工学版,2011, 41(5):1421-1425.
Du Jun,Li Wei-hua. Security trust model for multi-hop wireless ad hoc networks[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(5):1421-1425.
[6] 黄仁乐,蒲天骄,刘克文,等. 城市能源互联网功能体系及应用方案设计[J]. 电力系统自动化,2015,39(9):26-40.
Huang Ren-le,Pu Tian-jiao,Liu Ke-wen,et al.Design of hierarchy and functions of regional energy internet and its demonstration applications[J].Automation of Electric Power Systems,2015,39(9):26-40.
[7] 田世明,栾文鹏,张东霞,等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报,2015,35(14):3482-3494.
Tian Shi-ming,Luan Wen-peng,Zhang Dong-xia,et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE,2015,35(14):3482-3494.
[8] 曹军威,孟坤,王继业,等. 能源互联网与能源路由器[J]. 中国科学:信息科学,2014,44(6):714-727.
Cao Jun-wei,Meng Kun,Wang Ji-ye,et al. An energy internet and energy routers[J]. Scientia Sinica Information,2014,44(6):714-727.
[9] 蔡巍,赵海,王进法,等. 能源互联网宏观结构的统一网络拓扑模型[J]. 中国电机工程学报,2015,35(14):3503-3510.
Cai Wei,Zhao Hai,Wang Jin-fa,et al. A unifying network topological model of the energy internet macro-scope structure[J]. Proceedings of the CSEE,2015,35(14):3503-3510.
[10] Komninos N,Philippou E,Pitsillides A,et al. Survey in smart grid and smart home security: issues, challenges and countermeasures[J]. IEEE Communica-tions Surveys & Tutorials,2014,16(4):1933-1954.
[11] Yan Y,Qian Y,Sharif H,et al. A survey on cyber security for smart grid communications[J]. IEEE Communications Surveys & Tutorials,2012,14(4):998-1010.
[12] Mo Y L,Kim T H J,Brancik K,et al. Cyber-physical security of a smart grid infrastructure[J]. Proceedings of the IEEE,2012,100(1):195-209.
[13] Wang Wen-ye,Lu Zhuo. Cyber security in the smart grid: survey and challenges[J]. Computer Networks,2013,57(5):1344-1371.
[14] Sridhar S,Hahn A,Govindarasu M,et al. Cyber-physical system security for the electric power grid[J]. Proceedings of the IEEE,2012,100(1):210-224.
[15] Suleiman H,Alqassem I,Diabat A,et al. Integrated smart grid systems security threat model[J]. Information Systems,2015,53:147-160.
[16] Pasqualetti F,Dorfler F,Bullo F. Attack detection and identification in cyber-physical systems[J]. IEEE Transactions on Automatic Control,2013,58(11):2715-2729.
[17] Pasqualetti F,Zhu Q. Design and operation of secure cyber-physical systems[J]. IEEE Embedded Systems Letters,2015,7(1):3-6.
[18] Horowitz B M,Pierce K M. The integration of diversely redundant designs, dynamic system models, and state estimation technology to the cyber security of physical systems[J]. Systems Engineering,2013,16(4):401-412.
[19] Vollmer T,Manic M. Cyber-physical system security with deceptive virtual hosts for industrial control networks[J]. IEEE Transactions on Industrial Informatics,2014,10(2):1337-1347.
[20] Hu Cheng-feng,Fang Shu-cherng. Set covering-based topsis method for solving sup- T equation constrained multi-objective optimization problems[J]. Journal of Systems Science and Systems Engineering,2015,24(3):258-275.
[21] 张焕国,赵波. 可信计算[M]. 武汉:武汉大学出版社,2011.
[22] TCG. TPM main specification[EB/OL].http://www.trustedcomputinggroup.org/resources/tpm_main_specification,2015-10-31.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!