吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1859-1866.doi: 10.13229/j.cnki.jdxbgxb20170674

• • 上一篇    下一篇

基于备用虚拟机同步休眠的云数据中心节能策略及性能

金顺福1,2,3(),王宝帅1,郝闪闪1,贾晓光1,霍占强2()   

  1. 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
    2. 河南理工大学 计算机科学与技术学院,河南 焦作 454000
    3. 通信网信息传输与分发技术重点实验室,石家庄 050081
  • 收稿日期:2017-06-27 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:金顺福(1966-),女,教授,博士生导师.研究方向:计算机网络性能分析,排队论研究与应用.
  • 基金资助:
    国家自然科学基金项目(61872311,61472342);河北省自然科学基金项目(F2017203141);通信网信息传输与分发技术重点实验室开放课题项目(KX172600025);秦皇岛市科学技术研究与发展计划项目(201502A026, 201701B008)

Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research

JIN Shun-fu1,2,3(),WANG Bao-shuai1,HAO Shan-shan1,JIA Xiao-guang1,HUO Zhan-qiang2()   

  1. 1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004,China
    2. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000,China
    3. Science and Technology on Communication Networks Laboratory,Shijiazhuang 050081,China
  • Received:2017-06-27 Online:2018-11-20 Published:2018-12-11

摘要:

为了降低能源消耗实现绿色云计算,提出一种基于备用虚拟机同步休眠的云数据中心节能策略。系统中的虚拟机分为主模块和备用模块两大模块,其中,主模块一直处于活跃状态;根据云数据中心的工作负载轻重,备用模块处于休眠状态或者活跃状态。考虑到云数据中心可以为多任务用户请求提供服务,建立了一个批量到达且部分服务台同步多重休假的排队模型。采用高斯赛德尔法,求解系统模型的稳态分布,给出系统节能率等性能指标表达式。最后,进行数值试验和仿真试验,研究了基于备用虚拟机同步休眠的云数据中心节能策略的系统性能,并验证了所提策略的有效性。

关键词: 计算机应用, 云数据中心, 部分休眠, 批量到达, 高斯塞德尔法

Abstract:

With the rapid development of cloud computing, more and more people shift their workload to the cloud data centers, the energy consumption of the cloud data centers is non-negligible. In order to reduce energy consumption and achieve green cloud service, an energy saving strategy in the cloud data centers based on synchronous sleeping of the reservation virtual machines is proposed. All the Virtual Machines (VMs) are divided into two groups: the main group and the reservation group. The main group is always activated. According to the traffic load of the cloud data centers, the reservation group may be asleep or activated. Considering the cloud data centers served for the user requests with multiple tasks, a batch arrival queuing model with part servers synchronization multiple vacation is established. By using Gauss Seidel method, the steady-state distribution of the system model is derived, and the performance measures, such as the energy saving rate of system are evaluated. Numerical experiments with analysis and simulation are provided to study the system performance of the energy saving strategy in the cloud data centers based on synchronous sleeping of the reservation VMs and verify the effectiveness of the proposed strategy.

Key words: computer application, cloud data centers, partial sleep, batch arrival, Gauss Seidel method

中图分类号: 

  • TP393

图1

备用模块状态转换图"

图2

系统状态转换图"

表1

系统参数"

参 数 数值
主模块虚拟机的数量n/个 20
备用模块虚拟机的数量m/个 20
缓冲区容量r/个 70
用户请求规模参数θ 0.2
虚拟机服务率μ/s-1 1.0

图3

单元任务阻塞率的变化趋势"

图4

单元任务平均响应时间的变化趋势"

图5

系统节能率的变化趋势"

[1] Fard S, Ahmadi M, Adabi S . A dynamic VM consolidation technique for QoS and energy consumption in cloud environment[J/OL]. Journal of Supercomputing.[ 2017- 06- 01]. .
[2] Hamee A, Khoshkbarforoushha A, Ranjan R , et al. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems[J]. Computing, 2016,98(7):751-774.
doi: 10.1007/s00607-014-0407-8
[3] Dabbagh M, Hamdaoui B, Guizani M , et al. Toward energy-efficient cloud computing: prediction, consolidation and overcommitment[J]. IEEE Network, 2015,29(2):56-61.
doi: 10.1109/MNET.2015.7064904
[4] Li H, Zhu G, Cui C , et al. Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing[J]. Computing, 2016,98(3):303-317.
doi: 10.1007/s00607-015-0467-4
[5] 张沪寅, 汪思思, 钱龙 , 等. 面向SDN数据中心网络的路径资源管理节能机制研究[J]. 小型微型计算机系统, 2017,38(4):755-760.
[6] 杨静, 周超, 彭海英 , 等. 自适应QoS感知的以太网无源光网络节能机制[J]. 重庆邮电大学学报:自然科学版, 2017,29(2):216-222.
doi: 10.3979/j.issn.1673-825X.2017.02.012
Yang Jing, Zhou Chao, Peng Hai-ying , et al. Adaptive energy saving mechanism with QoS aware in ethernet passive optical network[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2017,29(2):216-222.
doi: 10.3979/j.issn.1673-825X.2017.02.012
7 Zhang Hu-yin, Wang Si-si, Qian Long , et al. SDN data center networks oriented energy saving mechanism research based on the path resource management[J]. Journal of Chinese Computer Systems, 2017,38(4):755-760.
[7] Liao D, Li K, Sun G, et al. Energy and performance management in large data centers: a queuing theory perspective [C]//Proceedings of the International Conference on Computing, Networking and Communications, Garden Grove,America, 2015: 287-291.
[8] Cao J, Li K, Stojmenovic I . Optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers[J]. IEEE Transactions on Computers, 2014,63(1):45-58.
doi: 10.1109/TC.2013.122
[9] Kuehn P J, Mashaly M . Automatic energy efficiency management of data center resources by load-dependent server activation and sleep modes[J]. Ad Hoc Networks, 2015,25(B):497-504.
doi: 10.1016/j.adhoc.2014.11.013
[10] Di S, Kondo D, Cappello F. Characterizing cloud applications on a Google date center [C]//Proceedings of the International Conference on Parallel Processing, Lyon, France, 2013: 468-473.
[11] Benson T, Akella A, Maltz D. Network traffic characteristics of data centers in the wild [C]//Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia, 2010: 267-280.
[12] Chen G, He W, Liu J, et al. Energy-aware server provisioning and load dispatching for connection-intensive Internet services [C]//Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, San Francisco, America, 2008: 337-350.
[13] 何怀文, 傅瑜 . 批量到达下的IaaS云计算中心服务性能评价[J]. 电子科技大学报, 2015,44(3):445-450.
doi: 10.3969/j.issn.1001-0548.2015.03.022
He Huai-wen, Fu Yu . Service performance evaluation of IaaS cloud computing center under batch arrivals[J]. Journal of University of Electronic Science and Technology of China, 2015,44(3):445-450.
doi: 10.3969/j.issn.1001-0548.2015.03.022
[14] Nashid Anjum M D, Wang Hong-gang . Dynamic scheduling and analysis of real time systems with multiprocessors[J]. Digital Communications and Networks, 2016(3):130-138.
doi: 10.1016/j.dcan.2016.06.004
[15] 金顺福, 姚兴华, 霍占强 . 非理想感知下动态信道绑定策略性能[J]. 吉林大学学报:工学版, 2016,46(5):1667-1674.
Jin Shun-fu, Yao Xing-hua, Huo Zhan-qiang . Performance of the dynamic channel bonding strategy with imperfect channel sensing[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(5):1667-1674.
[16] 马子骥, 彭强, 周冰航 , 等. 基于分数时延信道模型的低复杂度信道估计方法[J]. 重庆邮电大学学报:自然科学版, 2017,29(5):611-617.
Ma Zi-ji, Peng Qiang, Zhou Bing-hang , et al. Low complexity channel estimation method based on fractional delay channel model[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2017,29(5):611-617.
[17] Li Rui-dong, Asaeda Hitoshi, Li Jie , et al. A distributed authentication and authorization scheme for in-network big data sharing[J]. Digital Communications and Networks, 2017(4):226-235.
[18] 戈立军, 程以泰, 张华 , 等. 基于压缩感知的非线性 OFDM 系统迭代信道估计算法[J]. 重庆邮电大学学报:自然科学版, 2016,28(5):680-685.
Ge Li-jun, Cheng Yi-tai, Zhang Hua , et al. Iterative channel estimation based on compressed sensing for nonlinearly distorted OFDM systemsl[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2016,28(5):680-685.
[1] 王楠,李金宝,刘勇,张玉杰,钟颖莉. TPR⁃TF:基于张量分解的时间敏感兴趣点推荐模型[J]. 吉林大学学报(工学版), 2019, 49(3): 920-933.
[2] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[3] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 包铁,刘淑芬 . 基于通信顺序进程的网络故障管理形式化描述[J]. 吉林大学学报(工学版), 2007, 37(01): 117 -120 .
[2] 程平,张海涛,高岩,李俊锋,王洪艳 . ANN在聚丙烯酸酯乳液性质预测中的应用
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[3] 李洪萍,裴玉龙,杨中良 .

快速路自由流速度及其影响因素

[J]. 吉林大学学报(工学版), 2007, 37(04): 772 -776 .
[4] 段福庆,周明全,张家才 . 基于均值漂移的非线性尺度空间滤波[J]. 吉林大学学报(工学版), 2007, 37(03): 634 -0639 .
[5] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[6] 李静,吴云平,杨宗昂,郭立书,王军,李幼德,李春峰 . 车辆姿态控制系统悬架阻尼控制策略[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 24 -28 .
[7] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1 -05 .
[8] 杨志军,吴晓明,陈塑寰,孟树兴. 多工况约束下客车顶棚拓扑优化[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 12 -0015 .
[9] 徐安,乔向明. 基于更新理论的复杂设备故障率表达[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[10] 詹军. 用于自适应巡航控制的汽车纵向动力学模型的建立[J]. 吉林大学学报(工学版), 2006, 36(02): 157 -0160 .