吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1867-1872.doi: 10.13229/j.cnki.jdxbgxb20170066
赵东1(),孙明玉1,朱金龙1,于繁华1,刘光洁1,陈慧灵2()
ZHAO Dong1(),SUN Ming-yu1,ZHU Jin-long1,YU Fan-hua1,LIU Guang-jie1,CHEN Hui-ling2()
摘要:
为提高飞蛾优化算法求解实际问题的能力,提出了一种基于单存形的混合飞蛾优化算法。该算法通过粒子群优化获取飞蛾的初始最优位置,使其具有更佳丰富的种群;同时,引入单存形方法获取最优解。通过与其他4种算法在10个函数上测试比较,结果表明:本文算法收敛速度及解的质量优于其他算法,具有更好的求解能力和优化性能,可作为问题优化的有效工具。
中图分类号:
[1] |
Mirjalili S . Moth-flame optimization algorithm:a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015,89:228-249.
doi: 10.1016/j.knosys.2015.07.006 |
[2] |
Allam D, Yousri D A, Eteiba M B . Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm[J]. Energy Conversion & Management, 2016,123:535-548.
doi: 10.1016/j.enconman.2016.06.052 |
[3] |
Li Cun-bin, Li Shu-ke, Liu Yun-qi . A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting[J]. Applied Intelligence, 2016,45(4):1166-1178.
doi: 10.1007/s10489-016-0810-2 |
[4] | Zhao Hui-ru, Zhao Hao-ran, Guo Sen . Using GM (1,1) optimized by MFO with rolling mechanism to forecast the electricity consumption of inner mongolia[J]. Applied Sciences, 2016,6(1):1-18. |
[5] |
Aziz M A E, Ewees A A, Hassanien A E . Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation[J]. Expert Systems with Applications, 2017,83:242-256.
doi: 10.1016/j.eswa.2017.04.023 |
[6] |
Mei R N S, Sulaiman M H, Mustaffa Z , et al. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique[J]. Applied Soft Computing, 2017,59:210-222.
doi: 10.1016/j.asoc.2017.05.057 |
[7] |
Li C Y, Hou L X, Sharma B Y , et al. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion[J]. Comput Methods Programs Biomed, 2018,153:211-225.
doi: 10.1016/j.cmpb.2017.10.022 pmid: 29157454 |
[8] | Li Zhi-ming, Zhou Yong-quan, Zhang Sen , et al. Lévy-flight moth-flame algorithm for function optimization and engineering design problems[J]. Mathematical Problems in Engineering, 2016,2016:1423930. |
[9] | Khalilpourazari S, Khalilpourazary S . An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems[J/OL].[2017-10-28]. |
[10] |
Reddy M P K, Babu M R . A hybrid cluster head selection model for Internet of Things[J]. Cluster Computing, 2017(1):1-13.
doi: 10.1007/s10586-017-1261-1 |
[11] |
Wang Ming-jing, Chen Hui-ling, Yang Bo , et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses[J]. Neurocomputing, 2017,267:69-84.
doi: 10.1016/j.neucom.2017.04.060 |
[12] | Kazimipour B, Li X D, Qin K . A review of population initialization techniques for evolutionary algorithms [C]//2014 IEEE Congress on Evolutionary Computation,Beijing, China, 2014: 2585-2592. |
[13] | Ma Z K, Vandenbosch G A E . Impact of Random Number Generators on the performance of particle swarm optimization in antenna design [C]//6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 925-929. |
[14] |
黄璇, 郭立红, 李姜 , 等. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版, 2017,47(3):996-1002.
doi: 10.13229/j.cnki.jdxbgxb201703042 |
Huang Xuan, Guo Li-hong, Li Jiang , et al. Target threat assessment based on BP neural network optimized by modified particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(3):996-1002.
doi: 10.13229/j.cnki.jdxbgxb201703042 |
|
[15] |
Dai Jing-yi, Wang Shao-wei . Clustering-based interference management in densely deployed femtocell networks[J]. Digital Communications and Networks, 2016(4):175-183.
doi: 10.1016/j.dcan.2016.10.002 |
[16] | 何莉, 王淼, 李博 . 面向单目标优化的集成粒子群算法[J]. 重庆邮电大学学报:自然科学版, 2017,29(4):527-534. |
He Li, Wang Miao, Li Bo . Ensemble particle swarm optimizer for single objective optimizationl[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2017,29(4):527-534. | |
[17] |
Hamid N F A, Rahim N A, Selvaraj J . Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization[J]. Journal of Renewable & Sustainable Energy, 2016,8(1):78-81.
doi: 10.1063/1.4941791 |
[18] |
Zhou Yong-quan, Zhou Yu-xiang, Luo Qi-fang , et al. A simplex method-based social spider optimization algorithm for clustering analysis[J]. Engineering Applications of Artificial Intelligence, 2017,64:67-82.
doi: 10.1016/j.engappai.2017.06.004 |
[19] |
戴月明, 朱达祥, 吴定会 . 核矩阵协同进化的震荡搜索粒子群优化算法[J]. 重庆邮电大学学报自然科学版, 2016,28(2):247-253.
doi: 10.3979/j.issn.1673-825X.2016.02.017 |
Dai Yue-ming, Zhu Da-xiang, Wu Ding-hui . Shock search particle swarm optimization algorithm based on kernel matrix synergistic evolution[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2016,28(2):247-253.
doi: 10.3979/j.issn.1673-825X.2016.02.017 |
[1] | 王楠,李金宝,刘勇,张玉杰,钟颖莉. TPR⁃TF:基于张量分解的时间敏感兴趣点推荐模型[J]. 吉林大学学报(工学版), 2019, 49(3): 920-933. |
[2] | 徐开,陈志刚,赵靖华,戴路,李峰. 基于粒子群算法的星敏感器布局设计[J]. 吉林大学学报(工学版), 2019, 49(3): 972-978. |
[3] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[4] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[5] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[6] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[7] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[8] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[9] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[10] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[11] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[12] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[13] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[14] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[15] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
|