吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1867-1872.doi: 10.13229/j.cnki.jdxbgxb20170066

• • 上一篇    下一篇

结合粒子群和单纯形的改进飞蛾优化算法

赵东1(),孙明玉1,朱金龙1,于繁华1,刘光洁1,陈慧灵2()   

  1. 1. 长春师范大学 计算机科学与技术学院,长春 130032
    2. 温州大学 数理与电子信息工程学院,浙江 温州 325035
  • 收稿日期:2018-01-17 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:赵东(1978-),男,副教授,博士.研究方向:智能信息系统与嵌入式技术.E-mail: zd-hy@163.com
  • 基金资助:
    吉林省教育厅“十三五”科学技术研究项目(2016392);吉林省产业技术研究与开发专项项目(2017C301-2);吉林省科技厅重点科技研发项目(20180201086SF)

Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method

ZHAO Dong1(),SUN Ming-yu1,ZHU Jin-long1,YU Fan-hua1,LIU Guang-jie1,CHEN Hui-ling2()   

  1. 1. College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
    2. College of Mathematics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
  • Received:2018-01-17 Online:2018-11-20 Published:2018-12-11

摘要:

为提高飞蛾优化算法求解实际问题的能力,提出了一种基于单存形的混合飞蛾优化算法。该算法通过粒子群优化获取飞蛾的初始最优位置,使其具有更佳丰富的种群;同时,引入单存形方法获取最优解。通过与其他4种算法在10个函数上测试比较,结果表明:本文算法收敛速度及解的质量优于其他算法,具有更好的求解能力和优化性能,可作为问题优化的有效工具。

关键词: 计算机应用, 单纯形法, 飞蛾优化算法, 粒子群优化, 函数优化

Abstract:

In order to improve the ability of moth optimization algorithm in solving practical problems, a novel hybrid moth optimization algorithm based on single storage is proposed. The algorithm uses particle swarm optimization to obtain the initial optimal location of the moths, so that it has a better and richer population. The optimal solution is also obtained by the simplex method. The proposed algorithm is compared with other four kinds of algorithms by tests on ten functions. Experimental results show that the convergence speed and solution quality of the proposed algorithm are better than other algorithms, it has better solving and optimizing performance, and can be used as an effective optimization tool.

Key words: computer application, simplex method, moth-flame optimization method, particle swarm optimization(PSO), function optimization

中图分类号: 

  • TP393

图1

混合MFO算法流程图"

表1

基准函数"

函 数 参数取值 最小值
f1x=i=1nxi2 [-100,100] 0
f2(x)=i=1n(j=1ixj)2 [-100,100] 0
f3(x)=i=1n([xi+0.5])2 [-100,100] 0
f4(x)=i=1n[xi2-10cos(2πxi)+10] [-5.12,5.12] 0
f5(x)=-20exp-0.21ni=1nxi2-exp1ni=1ncos2πxi+20+e [-32,32] 0
f6(x)=14000i=1nxi2-i=1ncosxii+1 [-600,600] 0
f7(x)=-i=14ciexp-j=16aijxj-pij2 [0,1] -3.32
f8(x)=-i=15X-aiX-aiT+ci-1 [0,10] -10.1532
f9(x)=-i=17X-aiX-aiT+ci-1 [0,10] -10.4028
f10(x)=-i=110X-aiX-aiT+ci-1 [0,10] -10.5363

表2

基准函数测试结果"

函数 评估指标 ASMFO算法 MFO算法 BA算法 DA算法 PSO算法
f1 mean 6.61587×10-7 1333.333611 14.41469608 1310.364321 128.8093818
std 1.06073×10-6 3457.459063 1.950027759 702.372311 16.73078547
rank 1 5 2 4 3
f2 mean 11.13415206 16890.85645 66.99110732 12941.56989 424.1775374
std 5.154097921 11761.33616 15.65998979 9035.062058 91.97276795
rank 1 5 2 4 3
f3 mean 3.33979×10-7 336.6754613 14.13230939 1206.616187 130.4472998
std 3.80072×10-7 1844.044846 2.021082608 556.6614262 13.69394367
rank 1 4 2 5 3
f4 mean 123.6179 161.0097 269.4918 159.1627 371.1542
std 34.70155 29.88465 21.51611 35.78036 21.12408
rank 1 3 4 2 5
f5 mean 0.949335 13.62444 4.415123 9.1096 8.560911
std 0.987226 7.940168 0.22009 1.792495 0.273829
rank 1 5 2 4 3
f6 mean 0.012629 15.08013 0.57143 12.63523 1.029492
std 0.016012 34.26064 0.055542 6.425597 0.006695
rank 1 5 2 4 3
f7 mean -3.28199 -3.211 -2.92727 -3.24876 -2.91484
std 0.065413 0.062542 0.139138 0.095367 0.167127
rank 1 3 4 2 5
f8 mean -8.9743 -5.47333 -6.01592 -7.66817 -3.76938
std 2.173469 3.262726 2.988532 2.663623 1.264555
rank 1 4 3 2 5
f9 mean -9.69972 -8.12273 -5.70277 -7.75656 -4.61679
std 1.823505 3.337846 3.16243 3.087822 1.289141
rank 1 2 4 3 5
f10 mean -10.3561 -8.3255 -5.95764 -7.71155 -4.64473
std 0.987348 3.481528 3.131923 2.864567 1.056005
rank 1 2 4 3 5
排名和 10 38 27 33 40
总体排名 1 4 2 3 5

图2

各算法在函数f1上的收敛趋势图"

图3

各算法在函数f2上的收敛趋势图"

图4

各算法在函数f5上的收敛趋势图"

图5

各算法在函数f10上的收敛趋势图"

[1] Mirjalili S . Moth-flame optimization algorithm:a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015,89:228-249.
doi: 10.1016/j.knosys.2015.07.006
[2] Allam D, Yousri D A, Eteiba M B . Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm[J]. Energy Conversion & Management, 2016,123:535-548.
doi: 10.1016/j.enconman.2016.06.052
[3] Li Cun-bin, Li Shu-ke, Liu Yun-qi . A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting[J]. Applied Intelligence, 2016,45(4):1166-1178.
doi: 10.1007/s10489-016-0810-2
[4] Zhao Hui-ru, Zhao Hao-ran, Guo Sen . Using GM (1,1) optimized by MFO with rolling mechanism to forecast the electricity consumption of inner mongolia[J]. Applied Sciences, 2016,6(1):1-18.
[5] Aziz M A E, Ewees A A, Hassanien A E . Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation[J]. Expert Systems with Applications, 2017,83:242-256.
doi: 10.1016/j.eswa.2017.04.023
[6] Mei R N S, Sulaiman M H, Mustaffa Z , et al. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique[J]. Applied Soft Computing, 2017,59:210-222.
doi: 10.1016/j.asoc.2017.05.057
[7] Li C Y, Hou L X, Sharma B Y , et al. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion[J]. Comput Methods Programs Biomed, 2018,153:211-225.
doi: 10.1016/j.cmpb.2017.10.022 pmid: 29157454
[8] Li Zhi-ming, Zhou Yong-quan, Zhang Sen , et al. Lévy-flight moth-flame algorithm for function optimization and engineering design problems[J]. Mathematical Problems in Engineering, 2016,2016:1423930.
[9] Khalilpourazari S, Khalilpourazary S . An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems[J/OL].[2017-10-28].
[10] Reddy M P K, Babu M R . A hybrid cluster head selection model for Internet of Things[J]. Cluster Computing, 2017(1):1-13.
doi: 10.1007/s10586-017-1261-1
[11] Wang Ming-jing, Chen Hui-ling, Yang Bo , et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses[J]. Neurocomputing, 2017,267:69-84.
doi: 10.1016/j.neucom.2017.04.060
[12] Kazimipour B, Li X D, Qin K . A review of population initialization techniques for evolutionary algorithms [C]//2014 IEEE Congress on Evolutionary Computation,Beijing, China, 2014: 2585-2592.
[13] Ma Z K, Vandenbosch G A E . Impact of Random Number Generators on the performance of particle swarm optimization in antenna design [C]//6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 925-929.
[14] 黄璇, 郭立红, 李姜 , 等. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版, 2017,47(3):996-1002.
doi: 10.13229/j.cnki.jdxbgxb201703042
Huang Xuan, Guo Li-hong, Li Jiang , et al. Target threat assessment based on BP neural network optimized by modified particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(3):996-1002.
doi: 10.13229/j.cnki.jdxbgxb201703042
[15] Dai Jing-yi, Wang Shao-wei . Clustering-based interference management in densely deployed femtocell networks[J]. Digital Communications and Networks, 2016(4):175-183.
doi: 10.1016/j.dcan.2016.10.002
[16] 何莉, 王淼, 李博 . 面向单目标优化的集成粒子群算法[J]. 重庆邮电大学学报:自然科学版, 2017,29(4):527-534.
He Li, Wang Miao, Li Bo . Ensemble particle swarm optimizer for single objective optimizationl[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2017,29(4):527-534.
[17] Hamid N F A, Rahim N A, Selvaraj J . Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization[J]. Journal of Renewable & Sustainable Energy, 2016,8(1):78-81.
doi: 10.1063/1.4941791
[18] Zhou Yong-quan, Zhou Yu-xiang, Luo Qi-fang , et al. A simplex method-based social spider optimization algorithm for clustering analysis[J]. Engineering Applications of Artificial Intelligence, 2017,64:67-82.
doi: 10.1016/j.engappai.2017.06.004
[19] 戴月明, 朱达祥, 吴定会 . 核矩阵协同进化的震荡搜索粒子群优化算法[J]. 重庆邮电大学学报自然科学版, 2016,28(2):247-253.
doi: 10.3979/j.issn.1673-825X.2016.02.017
Dai Yue-ming, Zhu Da-xiang, Wu Ding-hui . Shock search particle swarm optimization algorithm based on kernel matrix synergistic evolution[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2016,28(2):247-253.
doi: 10.3979/j.issn.1673-825X.2016.02.017
[1] 王楠,李金宝,刘勇,张玉杰,钟颖莉. TPR⁃TF:基于张量分解的时间敏感兴趣点推荐模型[J]. 吉林大学学报(工学版), 2019, 49(3): 920-933.
[2] 徐开,陈志刚,赵靖华,戴路,李峰. 基于粒子群算法的星敏感器布局设计[J]. 吉林大学学报(工学版), 2019, 49(3): 972-978.
[3] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[4] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[5] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[6] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[3] 李雪霞,冯久超 . 一种基于逆向迭代的非相干检测的]混沌数字通信方案[J]. 吉林大学学报(工学版), 2007, 37(01): 202 -205 .
[4] 包铁,刘淑芬 . 基于通信顺序进程的网络故障管理形式化描述[J]. 吉林大学学报(工学版), 2007, 37(01): 117 -120 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[7] 于华楠,康健 . 改进的基于Kalman滤波的盲多用户检测算法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .
[8] 梁继才,李义,李忠然,张巍,柳承德 . 汽车保险杠树脂传递模塑工艺充模过程的数值模拟[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 15 -19 .
[9] 赵春明,吴志新,马宁,李君 . 电动汽车高压电系统状态参数在线监测[J]. 吉林大学学报(工学版), 2007, 37(01): 37 -42 .
[10] 沈传亮,刘国君,董景石,杨志刚,程光明 . 压电型多振子单腔精密药物输送泵[J]. 吉林大学学报(工学版), 2007, 37(01): 89 -94 .