吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1606-1613.doi: 10.13229/j.cnki.jdxbgxb20170605
刘元宁1,2, 刘帅1,3, 朱晓冬1,2, 陈一浩1,2, 郑少阁1,2, 沈椿壮1,2
LIU Yuan-ning1,2, LIU Shuai1,3, ZHU Xiao-dong1,2, CHEN Yi-hao1,2, ZHENG Shao-ge1,2, SHEN Chun-zhuang1,2
摘要: 为了抑制虹膜噪声并提高算法通用性,提出在虹膜识别中运用高斯拉普拉斯(Log)算子与自适应优化伽柏(Gabor)滤波。Log算子抑制虹膜噪声,40组频率和方向各不同的Gabor滤波提取虹膜特征,将特征转化为二进制特征编码。滤波参数用变异粒子群优化(MPSO)算法针对不同虹膜库进行自适应优化。通过计算虹膜间的汉明(Hamming)距离判定虹膜类别。与其他Gabor滤波和机器学习类算法相比,该算法可以有效抑制虹膜噪声干扰进而提高识别正确率,同时算法在多种虹膜库识别的通用性更好。
中图分类号:
[1] 李星光,孙哲南,谭铁牛.虹膜图像质量评价综述[J].中国图象图形学报,2014, 19(6):813-824. Li Xing-guang, Sun Zhe-nan, Tan Tie-niu.Overview of iris image quality-assessment[J]. Journal of Image and Graphics,2014, 19(6):813-824. [2] 史春蕾, 周凤文, 胡雨露, 等. 虹膜图像的质量评价研究[J]. 液晶与显示, 2016, 31(12): 1131-1136. Shi Chun-lei, Zhou Feng-wen, Hu Yu-lu, et al.Study for iris image quality assessment[J]. Chinese Journal of Liquid Crystals and Displays,2016, 31(12): 1131-1136. [3] Liu Shuai, Liu Yuan-ning, Zhu Xiao-dong, et al.Iris double recognition based on modified evolutionary neural network[J]. Journal of Electronic Imaging, 2017,26(6): 063023 [4] Daugman J.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions,1993, 15(11):1148-1161. [5] 李欢利,郭立红,王心醉,等.基于加权Gabor滤波器的虹膜识别[J].吉林大学学报:工学版, 2014,44(1):196-202. Li Huan-li, Guo Li-hong, Wang Xin-zui,et al.Iris recognition based on weighted Gabor filte[J].Journal of Jilin University (Engineering and Technology Edition), 2014,44(1):196-202. [6] Field D J.Relations between the statistics of natural images and the response properties of cortical cells[J]. Journal of the Optical Society of America A: Optics Image Science and Vision, 1987, 4(12): 2379-2394. [7] 唐荣年,韩九强,张新曼.一种Log-Gabor滤波器结合多分辨率分析的虹膜识别方法[J].西安交通大学学报,2009,43(4):30-33. Tang Rong-nian, Han Jiu-qiang, Zhang Xin-man.An iris recognition method using Log-Gabor filter and multi-resolution analysis[J].Journal of Xi'an Jiaotong University,2009,43(4):30-33. [8] Zhou Jia-rui, Ji Zhen, Shen Lin-lin, et al.PSO based memetic algorithm for face recognition Gabor filters selection[C]∥IEEE Workshop on Memetic Computing, Paris, France,2011:1-6. [9] Gao Si, Zhu Xiao-dong, Liu Yuan-ning, et al.A quality assessment method of iris image based on support vector machine[J]. Journal of Fiber Bioengineering & Informatics, 2015,8(2):293-300. [10] Daugman J.Statistical richness of visual phase information: update on recognizing persons by iris patterns[J]. International Journal of Computer Vision, 2001, 45(1):25-38. [11] Daugman J.How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1):21-30. [12] Liu Shuai, Liu Yuan-ning, Zhu Xiao-dong,et al.Iris recognition based on adaptive gabor filte[R][C]∥12th Chinese Conference on Biometric Recognition. Germany:Springer, 2017:383-390. [13] 朱维文,赵跃进,张镜水,等.基于被动太赫兹波图像的图像分割技术[J].北京理工大学学报, 2013, 33(4): 399-402. Zhu Wei-wen, Zhao Yue-jin, Zhang Jing-shui, et al.Image segmentation of passive THz image[J].Transactions of Beijing Institute of Technology,2013,33(4):399-402. [14] 田启川. 虹膜识别原理及算法[M].北京:国防工业出版社,2010:96-110. [15] 李欢利,郭立红,李小明,等.基于统计特征中心对称局部二值模式的虹膜识别[J].光学精密工程,2013, 21(8): 2129-2136. Li Huan-li, Guo Li-hong, Li Xiao-ming, et al.Iris recognition based on SCCS-LBP[J].Optics and Precision Engineering,2013, 21(8): 2129-2136. [16] 张震,张英杰.基于支持向量机与Hamming距离的虹膜识别方法[J].郑州大学学报:工学版,2015,36(3):25-29. Zhang Zhen, Zhang Ying-jie.Iris recognition method based on support vector machine and Hamming distance[J].Journal of Zhengzhou University(Engineering Science),2015,36(3):25-29. [17] Megala T, Kashyap M, Vivekanandan K. Clonal selection algorithm with adaptive lévy mutation operator[C]∥ACM International Conference Proceeding Series, India, 2016: Article No.127. [18] 张军. 计算智能[M].北京:清华大学出版社,2010:107-130. [19] 赵天明. 虹膜特征提取方法研究[D].长春:吉林大学计算机科学与技术学院,2016. Zhao Tian-ming.Research on iris feature extraction[D]. Changchun: College of Computer Science and Technology, Jilin University, 2016. [20] 张震,刘博,李龙.一种多特征提取及融合的虹膜识别方法[J].郑州大学学报:工学版,2017,38(1):63-67. Zhang Zhen, Liu Bo, Li Long.An iris recognition algorithm of multiple features extraction and fusion[J].Journal of Zhengzhou University(Engineering Science),2017,38(1):63-67. [21] 田耘, 甄雯, 赵海军. 基于改进的SIFT算子和SVM分类器的瞳孔中心定位[J]. 液晶与显示, 2017, 32(6): 499-505. Tian Yun, Zhen Wen, Zhao Hai-jun.Accurate pupil center location with SIFT descriptor and SVM classifie[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(6): 499-505. [22] He Fei, Han Ye, Wang Han, et al.Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network[J].Journal of Electronic Imaging, 2017,26(2): 023005-023005. [23] Yu Zhi-wen, Chen Han-tao, You Jane, et al.Hybrid [24] 韩晓艳, 赵东. 基于粒子群的支持向量机图像识别[J]. 液晶与显示, 2017, 32(1): 69-75. Han Xiao-yan, Zhao Dong.Support vector machine image recognition based on particle swarm[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(1): 69-75. [25] 张国梁, 贾松敏, 张祥银, 等. 采用自适应变异粒子群优化SVM的行为识别[J]. 光学精密工程, 2017, 25(6): 1669-1678. Zhang Guo-liang, Jia Song-min, Zhang Xiang-yin, et al.Action recognition based on adaptive mutation particle swarm optimization for SVM[J]. Optics and Precision Engineering, 2017, 25(6): 1669-1678. [26] 王晓辉, 吴禄慎, 陈华伟, 等. 应用改进的粒子群优化模糊聚类实现点云数据的区域分割[J]. 光学精密工程, 2017, 25(4): 1095-1105. Wang Xiao-hui, Wu Lu-shen, Chen Hua-wei, et al.Region segmentation of point cloud data based on improved particle swarm optimization fuzzy clustering[J]. Optics and Precision Engineering, 2017, 25(4): 1095-1105. [27] 吉林大学生物识别与信息安全技术实验室.虹膜库[EB/OL].[2017-01-22].http:∥www.jlucomputer.com [28] Olanrewaju O A, Mbohwa C.Evaluating factors responsible for energy consumption: connection weight approach[C]∥IEEE Electrical Power and Energy Conference, Canada,2016:1-5. [29] 中国科学院自动化研究所.共享虹膜库[EB/OL]. [2017-01-22].http:∥www.cbsr.ia.ac.cn/china/Iris%20Databases%20CH.asp [30] 董宏兴. 基于自适应Gabor滤波的虹膜特征提取与识别方法研究[D].长春:吉林大学计算机科学与技术学院,2016. Dong Hong-xing.Research on iris feature extraction and recognition based on the adaptive Gabor filtering[D]. Changchun: College of Computer Science and Technology, Jilin University, 2016. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[7] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[8] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[9] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[10] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[11] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[12] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[13] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
[14] | 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253. |
[15] | 赵宏伟, 刘宇琦, 特日根, 陈长征, 臧雪柏. 基于有限序列的压缩新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 882-886. |
|