吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (3): 805-815.doi: 10.13229/j.cnki.jdxbgxb20171245

• • 上一篇    下一篇

船用柴油机废气再循环性能评估及应用

祖象欢(),杨传雷(),王贺春,王银燕   

  1. 哈尔滨工程大学 动力与能源工程学院,哈尔滨150001
  • 收稿日期:2017-12-21 出版日期:2019-05-01 发布日期:2019-07-12
  • 通讯作者: 杨传雷 E-mail:zuhuan0815@163.com;yangchuanlei@hrbeu.edu.cn
  • 作者简介:祖象欢(1991?),男,博士研究生.研究方向:柴油机增压及人工智能技术应用.E?mail:zuhuan0815@163.com
  • 基金资助:
    高技术船舶科研计划——船用低速机工程(一期)研制经费项目(CDG01?KT0302)

Exhaust gas recirculation performance evaluation of marine diesel engine and its application

Xiang⁃huan ZU(),Chuan⁃lei YANG(),He⁃chun WANG,Yin⁃yan WANG   

  1. Department of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2017-12-21 Online:2019-05-01 Published:2019-07-12
  • Contact: Chuan?lei YANG E-mail:zuhuan0815@163.com;yangchuanlei@hrbeu.edu.cn

摘要:

针对增压柴油机废气再循环(EGR)性能评估问题,特别是“小样本”下的最优决策,提出了一种基于不等权优化的评估及决策方法。首先,在TBD234V12型相继增压柴油机上搭建高压废气再循环系统,采集柴油机缸内爆压、燃油消耗率、NOx、CO及烟度等主要参数试验数据,建立最优关联分析模型,用来不同EGR方案的初步评价。其次,根据柴油机不同负荷工况,通过客观优化方法建立综合评价模型。最后,基于MATLAB GUIDE设计和建立了增压柴油机EGR性能综合评估及最优决策仿真平台。仿真结果表明:低负荷时小EGR率对应的综合评估值更高,因此宜采用较小EGR率;高负荷时,较低EGR率对应的综合评估值较低,较高EGR率获得了更高的评估值,但是过高的EGR率的综合评估值反而下降,因此不宜采用过高EGR率。仿真优化平台可以快捷、方便地解决增压柴油机EGR性能评估及最优决策问题。

关键词: 内燃机工程, 船用柴油机, 废气再循环, 性能评估, 最佳EGR率, 仿真优化平台

Abstract:

In view of EGR performance evaluation of turbocharged diesel engine, especially the optimal EGR rate under ‘small sample’, an optimization evaluation and decision?making method is proposed. First, the major test parameters including in?cylinder burst pressure, fuel consumption rate, NOx, CO and smoke are selected based onTBD234V12 type turbocharged diesel engine with a high?pressure exhaust gas recirculation system to establish the optimal correlation analysis model for the preliminary evaluation of different EGR schemes. Second, according to different speed conditions of diesel engine, a comprehensive evaluation model is established using optimized objective evaluation method. Finally, a simulation optimization platform for comprehensive performance evaluation and optimal decision?making of EGR is designed and established using MATLAB GUIDE. The results show that When diesel engine is in low?speed conditions, low EGR rate corresponds to a higher comprehensive assessment value, so a smaller EGR rate should be adopted. When diesel engine is in high?speed conditions, the comprehensive assessment value corresponding to the lower EGR rate is lower, and the higher EGR rate obtains a higher assessment value. However, the evaluation value of overly high EGR rate decreases. This result is basically consistent with the current control principle of EGR; The simulation optimization platform can quickly and easily solve the EGR performance evaluation and optimal decision?making of turbocharged diesel engine.

Key words: internal?combustion engine engineering, marine diesel engine, exhaust gas recirculation, performance evaluation, optimal EGR rate, simulation optimization platform

中图分类号: 

  • TK422

表1

TBD234V12柴油机主要技术参数"

项目参数
标定功率/kW444(1800 r/min)
缸径/mm×行程/mm128×140
压缩比15∶1
气缸排列方式V型 12缸 60°夹角
燃烧室型式直喷w型

表2

主要测试仪器"

测试仪器测试参数
AVL AMA I60废气分析仪柴油机排气中的NOx、CO2、CO、CH等废气成分体积浓度
Testo 350烟气分析仪柴油机进气CO2成分

439 CPACIMETER

不透光式烟度计

烟度测量
FC2210 智能油耗仪柴油机燃油消耗量
SG880 水力测功器转矩

图1

试验台架示意图"

图2

试验台架实物图"

表3

试验方案"

工况点

发动机转速/

(r·min-1

负荷百分数

/%

工况耗时/

min

19002510
29005010
39007510
412002510
512005010
612007510
715002510
815005010
915007510

图3

仿真优化平台主界面"

表4

部分工况点试验数据"

OPEGR率/%

燃油消耗率/

[g·(kW·h)-1]

CO

/10-6

NOx

/10-6

烟度

/m-1

缸内最高燃烧压力

/MPa

op12.4299.2336.37376.990.0465.8001
4.6302.5354.73329.650.0495.5583
8.6305.6395.36287.320.0585.4671
10.4310.6504.82251.20.095.4318
11.6313.1633.94231.30.145.3094
op22.2256.7196.2832.450.0517.7996
4.5259.9211.3786.30.0557.6176
7.1261.3229.4701.60.067.5171
9.3266.8273.5643.50.0787.4105
11.8268.1380.6589.70.197.1965
op32.2241.6316.571104.50.0637.2545
4.6242.7335.531002.60.0887.2108
7.5243.9366.7943.50.0847.1393
9.8246.9427.84890.650.127.0167
11.5248.7503.62783.60.276.9568
op41.8216.8164.31399.80.0569.0835
4217.9169.91365.40.0649.01549
7.9220.8176.91240.60.0788.8452
9.1224.5190.411190.118.7263
11.2226.1280.51086.40.258.5216
op51.7214.7286.5314320.119.1568
4.2217.9304.761351.60.139.0763
7.4218.2329.8911850.158.8016
9.1220.8366.541069.40.218.7569
11.8224.3426.71994.20.338.5597
op61.6199.8156.421010.110.5505
3.9202.3164.218940.1310.4165
7.5205172.216530.14810.2256
9.7209.220615210.16510.0584
11.1212.2312.314650.329.8568

表5

关联序列"

Xmax299.25.3094251.20.046336.37
X1299.2336.37376.990.0465.8001
X2302.5354.73329.650.0495.5583
X3305.6395.36287.320.0585.4671
X4310.6504.82251.20.095.4318
X5313.1633.94231.30.145.3094

表6

不同NOx权重的结果分析"

η3综合权重向量η1k综合评估值R
0.26[0.14420.15390.26000.23870.2032][0.82270.84780.81180.71620.6609]
0.28[0.14030.14980.28000.23230.1977][0.81690.84420.81170.72080.6666]
0.3[0.13640.14560.30000.22580.1922][0.81110.84060.81150.72540.6723]
0.32[0.13250.14150.32000.21940.1867][0.81630.83740.80760.72490.6672]
0.34[0.12860.13730.34000.21290.1812][0.79960.83340.81120.73470.6838]
0.36[0.12470.13310.36000.20650.1757][0.79380.82970.81110.73930.6895]
0.38[0.12080.12900.38000.20000.1702][0.78800.82610.81090.74400.6952]
0.40[0.11690.12480.40000.19360.1647][0.78220.82250.81080.74860.7010]
0.45[0.10720.11440.45000.17740.1510][0.76780.81350.81040.76020.7153]
0.50[0.09740.10400.50000.16130.1373][0.75330.80450.81000.77180.7296]
1 董天普,张付军,刘波澜,等.EGR对涡轮增压柴油机瞬态特性的影响[J].内燃机学报, 2017,35(2):118⁃124.
DongTian⁃pu,ZhangFu⁃jun,LiuBo⁃lan,et al. Effect of EGR on transient characteristics of turbocharged diesel engine[J]. Transactions of CSICE, 2017,35(2):118⁃124.
2 JafarmadarSamad, NematiPeyman. Analysis of exhaust gas recirculation (EGR) effects on exergy terms in an engine operating with diesel oil and hydrogen [J]. Energy, 2017,126:746⁃755.
3 ParkYoungsoo, BaeChoongsik. Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine[J]. Applied Energy,2014, 133:308⁃316.
4 安晓辉,刘波澜,张付军,等. 基于氧浓度的EGR对柴油机性能影响的仿真[J].内燃机学报,2013,31(2):115⁃119.
AnXiao⁃hui, LiuBo⁃lan, ZhangFu⁃jun, et al. Simulation of the effect of intake charge oxygen concentration based EGR on diesel engine performance[J]. Transactions of CSICE, 2013, 31(2) :115⁃119.
5 于秀敏,商震,张岳韬,等.废气再循环对直喷汽油机燃烧及排放影响的仿真[J].吉林大学学报:工学版,2016,46(4):1109⁃1117.
YuXiu⁃min, ShangZhen, ZhangYue⁃tao, et al. Simulation of EGR on combustion and emission of gasoline direct⁃injection engine[J]. Journal of Jilin University (Engineering and Technology Edition),2016, 46(4):1109⁃1117.
6 ShenKai, LiFang⁃bo, ZhangZhen⁃dong, et al. Effects of LP and HP cooled EGR on performance and emissions in turbocharged GDI engine[J]. Applied Thermal Engineering, 2017, 125: 746⁃755.
7 JafarmadarSamad, NematiPeyman. Analysis of Exhaust Gas Recirculation (EGR) effects on exergy terms in an engine operating with diesel oil and hydrogen [J]. Energy, 2017,126: 746⁃755.
8 赵昌普,朱云尧,李艳丽,等.增压中冷柴油机EGR系统文丘里管的设计与试验[J].农业工程学报, 2013,29(15): 49⁃56.
ZhaoChang⁃pu, ZhuYun⁃yao,LiYan⁃li, et al. Design and experimental of venturi in EGR system of turbocharged intercooled diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 49⁃56.
9 ShiXiao⁃chen, LiuBo⁃lan, ZhangChao, et al. A study on combined effect of high EGR rate and biodiesel on combustion and emission performance of a diesel engine[J].Applied Thermal Engineering,2017,125: 1272⁃1279.
10 郭亮,杨文昭,王云开,等.废气再循环对丁醇/柴油混合燃料发动机的影响[J].吉林大学学报:工学版,2017,47(6):1767⁃1774.
GuoLiang, YangWen⁃zhao, WangYun⁃kai, et al. Effect of exhaust recirculation on internal combustion engine fueled with butanol/diesel blend[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6):1767⁃1774.
11 韩林沛, 洪伟, 苏岩, 解方喜, 陈静, 杜文畅. 直喷汽油机排气门二次开启对回流废气分层和燃烧特性的影响[J]. 吉林大学学报:工学版, 2017, 47(1): 113⁃121.
HanLin⁃pei, HongWei, SuYan,et al. Effect of GDI engine exhaust valve secondary open on refluent EGR stratification and combustion characteristics[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 113⁃121.
12 鹿盈盈,于文斌,裴毅强,等. EGR与喷油定时对柴油机预混燃烧颗粒排放的影响[J]. 内燃机学报,2017,35(3):193⁃199.
LuYing⁃ying, YuWen⁃bin, PeiYi⁃qiang, et al. Effects of EGR and injection timing on PM emissions of PCCI combustion in a diesel engine[J]. Transactions of CSICE, 2017,35(3):193⁃199.
13 赵靖华,洪伟,冯枫,等.基于EGR策略的重型柴油机瞬态空燃比优化控制[J].吉林大学学报:工学版,2012,42(增刊1):151⁃155.
ZhaoJing⁃hua, HongWei, FengFeng, et al. Transient air⁃to⁃fuel ratio control on heavy duty diesel engine based on EGR technology[J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(Sup.1): 151⁃155.
14 NishiMina, KaneharaMasato, IidaNorimasa. Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed[J]. Applied Thermal Engineering,2016,99(25):42⁃60.
15 Kræn Vodder Nielsen, BlankeMogens, ErikssonLars, et al. Adaptive feedforward control of exhaust recirculation in large diesel engines[J]. Control Engineering Practice, 2017,65: 26⁃35.
16 XuMin, GuiYong, DengKang⁃yao.Fuel injection and EGR control strategy on smooth switching of CI/HCCI mode in a diesel engine[J].Journal of the Energy Institute,2015, 88(2):157⁃168.
17 王迎迎. 大功率柴油机EGR模拟研究[D].成都:西南交通大学机械工程学院,2012.
WangYing⁃ying. Simulation the effect of exhaust gas recirculation on the high⁃power diesel engine[D]. Chengdu:College of Mechanical Engineering of Southwest Jiaotong University,2012.
18 张振东,方毅博,陈振天.增压直喷式柴油机EGR率测试及优化研究[J].内燃机工程,2006,27(2):81⁃84.
ZhangZhen⁃dong, FangYi⁃bo, ChenZhen⁃tian. Research and experiments of EGR rates effect on a turbocharged diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2006,27(2):81⁃84.
19 郑清平,黎苏,郎晓姣,等.增压中冷柴油机EGR数值模拟与试验研究[J]. 内燃机工程,2012,33(2):33⁃37.
ZhengQing⁃ping, LiSu, LangXiao⁃jiao, et al. Simulation and Experimental Study on Turbocharged Inter⁃Cooled Diesel Engine with Exhaust Gas Recirculation[J]. Chinese Internal Combustion Engine Engineering, 2012,33 (2):33⁃37.
20 张振坤. EGR技术降低某船用柴油机NOx排放的研究[D].大连:大连海事大学轮机工程学院,2015.
ZhangZhen⁃kun. Study on NOx displacement of marine diesel engine with EGR[D].Dalian: College of Marine Engineering,Dalian Maritime University, 2015.
21 杜俊.V型柴油机采用EGR系统的计算与试验研究[D].哈尔滨:哈尔滨工程大学动力与能源工程学院,2013.
DuJun. Calculation and experimental research with EGR system for V type diesel engine[D]. Harbin:College of Power and Energy Engineering,Harbin Engineering University,2013.
22 温永美. EGR率对柴油机燃烧排放性能影响仿真分析 [D]. 重庆:重庆交通大学交通运输学院,2012.
WenYong⁃mei. The simulation analysis of EGR on the combustion and emission characteristics of diesel Engine[D]. Chongqing:College of Traffic and Transportation,Chongqing Jiaotong University, 2012.
23 WangLi⁃zhen, QianWu⁃yong. Grey target decisionmaking model of interval grey number based on cone volume[J]. Grey Systems: Theory and Application, 2017,7(2): 247⁃258.
24 GolinskaPaulina, KosackaMonika, MierzwiakRafal, et al. Grey decision making as a tool for the classification of the sustainability level of remanufacturing companies[J].Journal of Cleaner Production,2015,105(15): 28⁃40.
25 王渡,龚淼,陈德珍. 基于灰色决策的太阳能发电系统在垃圾填埋场应用[J].太阳能学报,2013,34(3):471⁃476.
WangDu, GongMiao, ChenDe⁃zhen. Application of solar power system on landfill based on grey relational method[J]. Acta Energiae Solaris Sinica, 2013, 34(3):471⁃476.
26 罗周全,徐海,谭浪浪,等. 矿山产能灰色局势决策优化[J]. 中南大学学报:自然科学版,2013,44(1):289⁃293.
LuoZhou⁃quan, XuHai, TanLang⁃lang, et al. Optimization of mine productivity based on grey situation decision[J]. Journal of Central South University (Science and Technology), 2013,44(1):289⁃293.
27 LiuS F, LinY. Grey Information: Theory and Practical Applications[M]. London: Springer⁃Verlag, 2006.
28 王正新,党耀国,宋传平. 基于区间数的多目标灰色局势决策模型[J]. 控制与决策,2009,24(3):388⁃392.
WangZheng⁃xin, DangYao⁃guo, SongChuan⁃ping. Multi⁃objective decision model of grey situation based on interval number[J]. Control and Decision, 2009,24(3): 388⁃392.
29 祖象欢,杨传雷,王银燕.基于GM(1,1)模型和MATLAB GUI的相继增压柴油机性能预测[J].哈尔滨工程大学学报,2015,36(11):1454⁃1458.
ZuXiang⁃huan, YangChuan⁃lei, WangYin⁃yan. Performance prediction of a sequential turbocharging diesel engine based on GM(1,1)model and MATLAB GUI[J]. Journal of Harbin Engineering University, 2015,36(11):1454⁃1458.
30 GigonBae,GreggRothermel,Doo⁃HwanBae. Comparing model⁃based and dynamic event⁃extraction based GUI testing techniques: an empirical study[J]. Journal of Systems and Software,2014,97:15⁃46.
31 Raj Jean Rossario, RahmanS M K, Sneh.Anand . Microcontroller USB interfacing with MATLAB GUI for low cost medical ultrasound scanners[J]. Engineering Science and Technology, an International Journal, 2016,19(2):964⁃969.
[1] 杨帅, 冯志炜, 赵治国, 周毅. 不同米勒循环方式对柴油机工作过程影响的一维模拟分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1444-1454.
[2] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[3] 李小平, 洪伟, 解方喜, 李翔宇, 杨文海, 代志尧. 应用推迟点火、废气再循环及过稀混合气降低稀燃甲醇发动机NOx排放[J]. 吉林大学学报(工学版), 2016, 46(5): 1478-1483.
[4] 于秀敏, 商震, 张岳韬, 杜耀东. 废气再循环对直喷汽油机燃烧及排放影响的仿真[J]. 吉林大学学报(工学版), 2016, 46(4): 1109-1117.
[5] 赵靖华, 洪伟, 冯枫, 解方喜. 基于EGR策略的重型柴油机瞬态空燃比优化控制[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 151-155.
[6] 李军, 李雄飞, 董元方, 赵海英. 一种新的分类器性能评估方法[J]. 吉林大学学报(工学版), 2012, 42(02): 463-468.
[7] 程鹏1,2,李华1,2,王有坤1,2,池俊成3,李国3,郭英男1,2,庄宇华4. 排气道废气再循环策略下实现汽油可控自燃的气门定时区域[J]. 吉林大学学报(工学版), 2011, 41(4): 932-937.
[8] 杨立平,马修真,李君,王立媛. 控制策略在天然气发动机上的应用[J]. 吉林大学学报(工学版), 2010, 40(04): 942-0946.
[9] 杨立平,郭英男,李君,刘金山,王立媛 . 混合气质量对乙醇发动机均质压燃燃烧特性的影响[J]. 吉林大学学报(工学版), 2008, 38(02): 273-0277.
[10] 王天灵,李骏,吴君华,王占峰. EGR和VNT的匹配对增压柴油机排放的影响[J]. 吉林大学学报(工学版), 2006, 36(04): 493-496.
[11] 孙剑涛, 刘忠长, 许允, 朱昌吉, 刘巽俊. YC4112ZLQ增压中冷柴油机排气再循环冷却器的设计计算[J]. 吉林大学学报(工学版), 2004, (4): 564-568.
[12] 刘忠长, 朱昌吉, 张振东. 车用柴油机排气再循环控制系统[J]. 吉林大学学报(工学版), 2004, (3): 337-341.
[13] 于秀敏, 李学民, 张建锐, 高跃. 柴油机分配泵电控系统的标定[J]. 吉林大学学报(工学版), 2004, (3): 342-347.
[14] 杨晓萍, 洪伟, 赵梅. 天然气发动机自适应控制软件抗干扰设计[J]. 吉林大学学报(工学版), 2004, (3): 348-351.
[15] 谭满志, 郭英男, 刘金山, 洪伟, 高海润, 吕庆胜. 增压中冷压燃式发动机燃用柴油醇的十三工况排放特性[J]. 吉林大学学报(工学版), 2004, (3): 352-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蔡成林,周桃云,施韶华,徐新生,李孝辉 . 超宽带组合脉冲优化设计及其性能分析[J]. 吉林大学学报(工学版), 2010, 40(04): 1150 -1154 .
[2] 缪东晶,吴聊,徐静,陈恳,谢颖,刘志. 飞机表面自动喷涂机器人系统与喷涂作业规划[J]. 吉林大学学报(工学版), 2015, 45(2): 547 -553 .
[3] 高继东, 秦孔建, 梁荣亮, 李孟良. 实际道路工况和法规工况下中型柴油机排放特性的对比分析[J]. 吉林大学学报(工学版), 2012, 42(01): 33 -38 .
[4] 董超, 成凯, 胡文强, 欧阳波, 武斌. 考虑土壤剪切变形的铰接式履带车辆转向性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1922 -1932 .
[5] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072 -1084 .
[6] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176 -1183 .
[7] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206 -1213 .
[8] 宋彦,高慧斌,田彦涛,张淑梅. 伺服系统受摩擦扰动产生极限环的原因及稳定性分析[J]. 吉林大学学报(工学版), 2011, 41(01): 214 -0220 .
[9] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191 -1198 .
[10] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537 -1547 .