吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1109-1117.doi: 10.13229/j.cnki.jdxbgxb201604015

• 论文 • 上一篇    下一篇

废气再循环对直喷汽油机燃烧及排放影响的仿真

于秀敏, 商震, 张岳韬, 杜耀东   

  1. 吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2015-11-17 出版日期:2016-07-20 发布日期:2016-07-20
  • 作者简介:于秀敏(1960),男,教授,博士生导师.研究方向:内燃机电子控制.E-mail:guoyn@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51276079)

Simulation of EGR on combustion and emission of gasoline direct-injection engine

YU Xiu-min, SHANG Zheng, ZHANG Yue-tao, DU Yao-dong   

  1. College of Automotive Engineering, Jilin University, Changchun 130022,China
  • Received:2015-11-17 Online:2016-07-20 Published:2016-07-20

摘要: 应用计算流体力学(CFD)软件对一台带有废气再循环(Exhaust gas recirculation,EGR)系统的均质缸内直喷(Gasoline direct-injection,GDI)汽油机进气冲程至作功冲程排气门开启时段进行了三维仿真,研究了不同EGR率和过量空气系数λ对缸内状态及排放特性的影响,探讨了温度场、火焰面密度、NO浓度场、CO浓度场、微粒浓度场等参数的变化趋势。结果表明:EGR率为10%时,能在对燃烧过程影响不大的情况下有效降低排放质量;同时,在缸压稍有下降的情况下,λ=1.1时能有效降低排放质量;λ=1.0时能保持较高的缸压和中等的排放水平。

关键词: 动力机械工程, 汽油机, 缸内直喷, 废气再循环, 燃烧, 排放, 仿真

Abstract: In this paper, three-dimensional (3D) simulation was carried out for the process from intake stroke to exhaust valve opening of a Gasoline Direct-Injection (GDI) engine combined with Exhaust Gas Recirculation (EGR) system using Computational Fluid Dynamics (CFD) software. The effects of different EGR rates and excess air factor, λ, on combustion and emission performances were analyzed. The temperature field, flame surface density, NO concentration field, CO concentration field and soot concentration field were also investigated. Simulation results show that the EGR has little influence on the combustion but it can effectively reduce the emission when the EGR rate is 10%. In addition, while the cylinder pressure descends slightly, the emission can be obviously reduced when λ=1.1; while as λ=1.0, the engine has higher cylinder pressure and moderate emission.

Key words: power machinery and engineering, gasoline engine, gasoline direct-injection(GDI), exhaust gas recirculation(EGR), combustion, emission, simulation

中图分类号: 

  • UK41
[1] Zhao F, Lai M C, Harrington D L. Automotive spark-ignited direct-injection gasoline engines[J]. Progress in Energy and Combustion Science, 1999, 25(5):437-462.
[2] Price P, Stone R, Collier T,et al. Particulate matter and hydrocarbon emissions measurements comparing first and second generation DISI with PFI in single cylinder optical engines[C]∥SAE Paper, 2006-01-1263.
[3] Taylor J, Neil F, Peter W. Water cooled exhaust manifold and full Load EGR technology applied to a downsized direct injection spark ignition engine[C]∥SAE Paper, 2010-01-0356.
[4] He Peng, Li Yun-qing, Zhao Li-feng. Evaporation of liquid fuel droplet at supercritical conditions[J]. Science China Tech Sciences, 2011, 54(2):369-374.
[5] Chen Zheng, Liu Jing-ping, Wu Zhen-kuo, et al. Effects of port fuel injection (PFI) of n -butanol and EGR on combustion and emissions of a direct injection diesel engine[J]. Energy Conversion and Management, 2013, 76(30): 725-731.
[6] Pan Ming-zhang, Shu Ge-qun, Wei Hai-qiao,et al. Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation[J]. Applied Thermal Engineering, 2014, 64(1-2):491-498.
[7] 潘锁柱,宋崇林,裴毅强,等. EGR对GDI汽油机燃烧和排放特性的影响[J]. 内燃机学报,2012,30(5):409-414.
Pan Suo-zhu, Song Chong-lin, Pei Yi-qiang,et al. Influence of EGR on combustion and emissions of a gasoline direct-injection engine[J]. Transactions of CSICE,2012,30(5):409-414.
[8] 谭文政,冯立岩,张春焕,等. 缸内直喷汽油机工作过程三维数值模拟[J]. 内燃机学报,2011,29(3):221-228.
Tan Wen-zheng, Feng Li-yan, Zhang Chun-huan,et al. 3D numerical simulation on the working process of a gasoline direct injection engine[J]. Transaction of CSICE,2011,29(3):221-228.
[9] Dukowicz J K. Quasi-steady droplet change in the presence of convection[R]. Informal Report Los AlamosScientific Laboratory, LA7997-MS, 1979.
[10] Huh K Y, Gosman A D. A phenomenological model of diesel spray atomization[C]∥Proceedings of the International Conference on Multiphase Flows, Tsukuba, Japan, 1991:24-27.
[11] Naber J D, Reitz R D. Modeling engine spray/wall impingement[C]∥SAE Paper, 880107.
[12] Patel S N D H, Bogensperger M, Tatschl R, et al. Coherent flame modelling of turbulent combustion—a validation study[J]. Computational Fluid and Solid Mechanics, 2003:1479-1482.
[13] Ludovic N, Fadila M. Numerical study of HCCI combustion in diesel engines using reduced chemical kinetics of N -heptane with multidimensional CFD code[C]∥SAE Paper, 2004-01-1909.
[14] Kennedy I M. Models of SOOT formation and oxidation[J].Progress in Energy and Combustion Science,1997, 23(2):95-132.
[15] Wyszynski L P, Aboagye R, Stone R, et al. Combustion imaging and analysis in a gasoline direct injection engine[C]∥SAE Paper, 2004-01-0045.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[3] 杨帅, 冯志炜, 赵治国, 周毅. 不同米勒循环方式对柴油机工作过程影响的一维模拟分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1444-1454.
[4] 臧鹏飞, 王哲, 孙晨乐, 林炼炼. 直线增程器稳态运行换气过程[J]. 吉林大学学报(工学版), 2018, 48(5): 1455-1465.
[5] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[6] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[7] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[8] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[9] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[10] 仇艳凯, 李宝仁, 杨钢, 曹博, 刘真. 新型液压消声器吸收液压系统压力脉动的机理和特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[11] 虞浏, 刘忠长, 刘金山, 刘江唯, 杜宏飞, 程鹏. 汽油喷雾前锋粒径特性[J]. 吉林大学学报(工学版), 2018, 48(3): 720-726.
[12] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[13] 江涛, 林学东, 李德刚, 顾静静. 压缩天然气缸内直喷发动机喷射方式对混合气形成及燃烧特性影响的模拟[J]. 吉林大学学报(工学版), 2018, 48(3): 735-743.
[14] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[15] 许秀军, 李震, 王立权, 张同喜. 海流边界下初始铺管作业建模及半物理仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 803-811.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .