吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1191-1198.doi: 10.13229/j.cnki.jdxbgxb20170359

• • 上一篇    下一篇

基于激光测振仪的非轴对称超声驻波声场的识别

董惠娟, 于震, 樊继壮   

  1. 哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150001
  • 收稿日期:2017-04-26 出版日期:2018-07-01 发布日期:2018-07-01
  • 通讯作者: 樊继壮(1976-),男,副教授,博士.研究方向:机器人技术.E-mail:fanjizhuang@hit.edu.cn
  • 作者简介:董惠娟(1968-),女,教授,博士生导师.研究方向:功率超声技术.E-mail:dhj@hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(51675140).

Identification of non-axisymmetric ultrasonic standing wave field using laser Doppler vibrometer

DONG Hui-juan, YU Zhen, FAN Ji-zhuang   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
  • Received:2017-04-26 Online:2018-07-01 Published:2018-07-01

摘要: 针对驻波悬浮辐射/反射面之间(谐振腔内)的非轴对称声场,首先通过COMSOL仿真得到第3悬浮模式下声场典型截面上的声压分布。然后,采用Matlab编程将此声压进行Radon变换,得到该截面上各方向的激光测振仪(LDV)速度输出,并将其与实验得到的LDV速度输出进行对比,验证了LDV速度输出与声场声压的对应关系。最后,基于FBP算法并通过Matlab编程将实验中获得的LDV速度输出进行重建,得到该截面的声压分布,对比COMSOL仿真结果,从而验证非轴对称驻波声场的识别效果。

关键词: 自动控制技术, 超声驻波, 谐振腔, 声场识别, 激光测振仪速度输出, Radon变换, 滤波反投影算法

Abstract: Measuring the acoustic pressure of standing wave is the basis of acoustic levitation. The non-axisymmetric acoustic field within the resonance cavity is analyzed. Firstly, the acoustic pressure distribution on the typical cross-section of the acoustic field in the third levitation mode is obtained by COMSOL simulation. The simulated acoustic pressure is Radon transformed to obtain the simulated LDV velocity output, which is compared with the experiment results to verify the relationship between LDV velocity output and acoustic pressure distribution. Then, based on Filer Back Projection (FBP) algorithm, a self-written MATLAB code is used to reconstruct the LDV velocity output in the experiment and obtain the acoustic pressure distribution of the cross-section, which is compared with the COMSOL simulation results. The identification effect of the non-axisymmetric standing wave acoustic filed is verified.

Key words: technology of automatic control, ultrasonic standing wave, resonance cavity, acoustic field identification, LDV velocity output, Radon transform, filtered back projection (FBP) algorithm

中图分类号: 

  • TD24
[1] 沈昌乐,解文军,洪振宇,等. 声悬浮技术的发展及应用[J]. 现代物理知识,2010,22(3):10-13.
[2] Pérez N,Andrade M A,Canetti R,et al.Experimental determination of the dynamics of an acoustically levitated sphere[J]. Journal of Applied Physics, 2014, 116(18): 184903.
[3] Olive J R,Hofmeister W H,Bayuzick R J,et al.Formation of tetragonal YBa2Cu3O7 δ from an undercooled melt[J]. Journal of Materials Research,1993,9(1):1-3.
[4] Bauerecker S,Neidhart B.Formation and growth of ice particles in stationary ultrasonic fields[J]. Journal of Chemical Physics,1998,109(10):3709-3712.
[5] Ohsaka K,Trinh E H,Glicksman M E.Undercooling of acoustically levitated molten drops[J]. Journal of Crystal Growth,1990,106(2/3):191-196.
[6] Gao J R,Cao C D,Wei B.Containerless processing of materials by acoustic levitation[J]. Advances in Space Research,1999,24(10):1293-1297.
[7] Santesson S,Andersson M,Degerman E,et al.Airborne cell analysis[J]. Analytical Chemistry,2000,72(15):3412-3419.
[8] Sundvik M,Nieminen H J,Salmi A,et al.Effects of acoustic levitation on the development of zebrafish,Danio rerio,embryos[J]. Journal of Symplectic Geometry,2015, 3(1):17-54.
[9] Wang H,Mu S,Zhang F,et al.Effects of atrazine on the development of neural system of zebrafish,danio rerio[J]. Biomed Research International, 2015, 2015(3):1-10.
[10] Vasileiou T,Foresti D,Bayram A,et al.Toward contactless biology: acoustophoretic DNA transfection[J]. Scientific Reports, 2016, 6:20023.
[11] Zang D,Chen Z,Geng X,et al.Sectorial oscillation of acoustically levitated nanoparticle-coated droplet[J]. Applied Physics Letters,2016,108(3):3164.
[12] Cao H L,Yin D C,Guo Y Z,et al.Rapid crystallization from acoustically levitated droplets[J]. Journal of the Acoustical Society of America,2012,131(4):3164-3172.
[13] Kozuka T,Tuziuti T,Mitome H,et al.Control of a standing wave field using a line-focused transducer for two-dimensional manipulation of particles[J]. Japanese Journal of Applied Physics,1998,37(5S):2974-2978.
[14] Foresti D,Nabavi M,Poulikakos D.Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulatora[J]. Journal of the Acoustical Society of America,2012,131(2):1029-1038.
[15] Koyama D,Nakamura K.Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2010,57(5):1152-1159.
[16] Koyama D,Nakamura K.Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2010,57(6):1434-1442.
[17] Foresti D,Nabavi M,Klingauf M,et al.Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Science,2013,110(31):12549-12554.
[18] Foresti D,Sambatakakis G,Bottan S,et al.Morphing surfaces enable acoustophoretic contactless transport of ultrahigh-density matter in air[J]. Scientific Reports,2013,3(11):3176.
[19] Embleton T F W. The propagation and reflection of sound pulses of finite amplitude[J]. Proceedings of the Physical Society,1956,69(3):382-395.
[20] Gor'kov L P.On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Sov Phys-Dokl,1962,6(1):773.
[21] Andrade M A B,Ramos T S,Okina F T A,et al. Nonlinear characterization of a single-axis acoustic levitator[J]. Review of Scientific Instruments,2014,85(4): 045125.
[22] Baucom J,Merrill M,Field C R,et al.Effect of placing a probe in an acoustic drop levitator[J]. Journal of Vibration & Acoustics,2015,4(2):116-117.
[23] Bahr L,Lerch R.Beam profile measurements using light refractive tomography[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2008,55(55):405-414.
[24] Chen L,Rupitsch S J,Lerch R.Non-perturbing measurement of sound pressure fields by means of laser Doppler vibrometer[C]∥IEEE Ultrasonics Symposium,2011:1095-1098.
[25] Nakamura K.Sound feild measurement through the acousto-optic effect of air by using laser Dopplerl Velocimenter[C]∥Proceedings of the 4th Pacific RIM Conference on Lasers and Electro-Optics,2001.
[26] Andrade M A,Ramos T S,Okina F T,et al.Nonlinear characterization of a single-axis acoustic levitator[J]. Review of Scientific Instruments,2014,85(4):045125.
[27] Andrade M A,Pérez N,Adamowski J C.Experimental study of the oscillation of spheres in an acoustic levitator[J]. Journal of the Acoustical Society of America,2014, 136(4):1518-1546.
[28] Bracewell R N.The Fourier Transform and its Applications[M]. 3rd ed. New York: McGraw-Hill,2000.
[29] Kak A C, Slaney M.Principles of Computerized Tomographic Imaging[M]. New York: IEEE Press,1988.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[8] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[9] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[10] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[11] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[12] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[13] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .