吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (4): 1162-1168.doi: 10.13229/j.cnki.jdxbgxb20171296

• • 上一篇    

碳化作用下水泥浆内亚硝酸根离子的含量分布

李晓珍(),柳俊哲(),戴燕华,贺智敏,巴明芳,李玉顺   

  1. 宁波大学 建筑工程与环境学院, 浙江 宁波315211
  • 收稿日期:2017-12-31 出版日期:2019-07-01 发布日期:2019-07-16
  • 通讯作者: 柳俊哲 E-mail:lixiaozhen01@126.com;junzheliu@163.com
  • 作者简介:李晓珍(1987?),女,博士研究生. 研究方向:混凝土结构耐久件. E?mail:lixiaozhen01@126.com
  • 基金资助:
    国家自然科学基金项目(51778302);浙江省自然科学基金项目(LY17E080007)

Effect of carbonation on nitrite ion distribution in cement paste

Xiao⁃zhen LI(),Jun⁃zhe LIU(),Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI   

  1. College of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
  • Received:2017-12-31 Online:2019-07-01 Published:2019-07-16
  • Contact: Jun?zhe LIU E-mail:lixiaozhen01@126.com;junzheliu@163.com

摘要:

通过电子探针微区分析(EPMA)和X射线衍射分析(XRD)技术探明了碳化对硬化水泥浆内亚硝酸根离子分布的影响,阐明了游离亚硝酸根离子的迁移和吸附规律,有利于精确评价亚硝酸根离子在混凝土中的阻锈作用。结果表明:含亚硝酸盐的水泥浆体水化后生成新的水化产物结晶相NO2?AFm,并均匀分布于水泥浆内。NO2?AFm在碳化过程中重新分解生成亚硝酸根离子并向未碳化区扩散,致使碳化区NO2?含量减少,非碳化区NO2?含量增加。由于碳化过程中C?S?H凝胶分解,吸附于凝胶表面的游离亚硝酸根离子重新转变成游离态,碳化区游离态亚硝酸根离子含量增多,同时硅元素从碳化区向未碳化区迁移,未碳化区C?S?H凝胶非晶态含量增加,提高了游离态亚硝酸根离子的固化率,使碳化区游离态亚硝酸根离子含量高于未碳化区。

关键词: 道路工程, 水泥浆体, 碳化, 亚硝酸根离子, 电子探针微区分析, NO2?AFm

Abstract:

The influence of carbonization on the distribution of nitrite ions in hardened cement paste is verified by electron probe microanalysis (EPMA) and X-ray diffraction (XRD), and the migration and adsorption of free nitrite ions in cement paste is clarified, which is important to accurately evaluates the corrosion-resistant effect of nitrite ion on reinforced concrete. The results reveal that a new hydrated crystallization phase NO2?AFm is produced after the hydration of nitrite-containing cement paste and is evenly distributed. During the carbonation process, NO2?AFm re-decomposes and generates nitrite ions, diffusing to non-carbonized area. This results in a decrease of NO2?content in carbonized area and an increase in non-carbonized area. Nevertheless, due to the decomposition of C?S?H gel during the carbonization process, the free nitrite ions adsorbed on its surface are re?transformed into free nitrite ion, increasing the content of free nitrite in the carbonization area. Meanwhile, the migration of silicon from carbonized area into non?carbonized area, contributes to a higher amorphous content of C?S?H gel in non-carbonized area, which increases the solidified effect of nitrite ion, and eventually leads to a higher nitrite ion content in carbonized area than that in non-carbonized area.

Key words: road engineering, cement paste, carbonation, nitrite ion, electron probe microanalysis(EPMA), NO2?AFm

中图分类号: 

  • TQ172

图1

水泥浆的碳化深度和N、Si元素分布"

图2

碳化作用下游离态亚硝酸根离子含量"

图3

含亚硝酸盐水泥浆体X射线衍射图"

图4

碳化作用下水泥浆内Si元素分布"

图5

碳化后含水泥浆X射线衍射图"

1 Marques P F , Chastre C , Nunes A . Carbonation service life modelling of RC structures for concrete with Portland and blended cements[J]. Cement and Concrete Composites, 2013, 37(6):171⁃184.
2 Kwon S J , Song H W . Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling[J]. Cement and Concrete Research, 2010, 40(1): 119⁃127.
3 Liu Jun⁃zhe , Ba Ming⁃fang , Du Yin⁃gang , et al . Effects of chloride ions on carbonation rate of hardened cement paste by X⁃ray CT technic[J]. Construction and Building Materials, 2016, 122(7): 619⁃627.
4 Li Qin⁃fei , Ge Yong , Yang Wen⁃cui . Effect of sodium sulfate and sodium nitrite on air⁃void system in airentrained concrete[J]. Magazine of Concrete Research, 2016, 68(23): 1200⁃1209.
5 Fayala I , Dhouibi L , Nóvoa X R , et al . Effect of inhibitors on the corrosion of galvanized steel and on mortar properties[J]. Cement Concrete Comp, 2013, 35(1): 181⁃189.
6 Goulart C M , Esteves-Souza A , Martinez⁃Huitle C A , et al . Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors[J]. Corrosion Science, 2013, 67:281⁃291.
7 Rakanta E , Zafeiropoulou T , Batis G . Corrosion protection of steel with DMEA⁃based organic inhibitor[J]. Construction and Building Materials, 2013, 44:507⁃513.
8 Verbruggen H , Terryn H , De Graeve I . Inhibitor evaluation in different simulated concrete pore solution for the protection of steel rebar[J]. Construction and Building Materials, 2016, 124: 887⁃896.
9 Mu G N , Li X H , Qu Q . Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution[J]. Corrosion Science, 2006, 48(2): 445⁃459.
10 Sanchez M , Alonso M C . Electrochemical chloride removal in reinforced concrete structures: improvement of effectiveness by simultaneous migration of calcium nitrite[J]. Construction and Building Materials, 2011, 25(2): 873⁃878.
11 Wong H S , Zhao Y X , Karimi A R , et al . On the penetration of corrosion products from reinforcing steel into concrete due to chloride⁃induced corrosion[J]. Corrosion Science, 2010, 52(7): 2469⁃2480.
12 Álvarez⁃Bustamante R , Negrón⁃Silva G , Abreu⁃Quijano M . Electrochemical study of 2⁃merca⁃ ptoimidazole as a novel corrosion inhibitor for steels[J]. Electrochimica Acta, 2009, 54(23): 5393⁃5399.
13 Valcarce M B , Vázquez M . Carbon steel passivity examined in solutions with a low degree of carbonation: the effect of chloride and nitrite ions[J]. Materials Chemistry and Physics, 2009, 115(1): 313⁃321.
14 El Haleem S M A , El Wanees S A , El Aal E E A , et al . Environmental factors affecting the corrosion behavior of reinforcing steel. IV. variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions[J]. Corrosion Science, 2010, 52(5): 1675⁃1683.
15 Yohai L , Schreiner W , Valcarce M B , et al . Inhibiting steel corrosion in simulated concrete with low phosphate to chloride ratios[J]. Journal of the Electrochemical Society, 2016, 163(13): 729⁃737.
16 Okeniyi J O , Omotosho O A , Ajayi O O . Effect of potassium⁃chromate and sodium⁃nitrite on concrete steel⁃rebar degradation in sulphate and saline media[J]. Construction and Building Materials, 2014, 50: 448⁃456.
17 柳俊哲, 袁伟静, 贺智敏, 等 . 碳化对混凝土碱骨料反应的影响[J]. 吉林大学学报: 工学版, 2015, 45(3): 783⁃787.
Liu Jun⁃zhe , Yuan Wei⁃jing , He Zhi⁃min , et al . Influence of carbonation on alkali⁃aggregate reaction in concrete[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(3): 783⁃787.
18 Al⁃Mehthel M , Al⁃Dulaijan S , Al⁃Idi S H , et al . Performance of generic and proprietary corrosion inhibitors in chloride⁃contaminated silica fume cement concrete[J]. Construction and Building Materials, 2009, 23(5): 1768⁃1774.
19 Tommaselli M A G , Mariano N A , Kuri S E . Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components[J]. Construction and Building Materials, 2009, 23(1): 328⁃333.
20 Lee H , Ryu H , Park W , et al . Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors[J]. Materials, 2015, 8(1): 251⁃269.
21 Han Jian⁃de , Pan Gang⁃hua , Sun Wei . Investigation on carbonation induced meso⁃defects changes of cement mortar using 3D X⁃Ray computed tomography[J]. Journal of the Chinese Ceramic Society, 2011, 399(10):75⁃79.
22 Lu S , Landis E N , Keane D T . X⁃ray microtomographic studies of pore structure and permeability in portland cement concrete[J]. Materials and Structures, 2006, 39(6): 611⁃620.
23 Rougelot T , Burlion N , Bernard D D , et al . About microcracking due to leaching in cementitious composites: X⁃ray microtomography description and numerical approach[J]. Cement and Concrete Research, 2010, 40(2): 271⁃283.
24 Cao Yan⁃hui , Dong Shi⁃gang . Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete[J]. Corrosion Science, 2017, 126(9):166⁃179.
[1] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[2] 黄晓明,曹青青,刘修宇,陈嘉颖,周兴林. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报(工学版), 2019, 49(3): 757-765.
[3] 王静,吕翔,曲肖龙,钟春玲,张云龙. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报(工学版), 2019, 49(3): 766-772.
[4] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[5] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[6] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[7] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[8] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[9] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[10] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[11] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[12] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[13] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[14] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[15] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!