吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1887-1894.doi: 10.13229/j.cnki.jdxbgxb20170769
SU Han-song,DAI Zhi-tao(),LIU Gao-hua,ZHANG Qian-fang
摘要:
针对现有显著性检测方法在复杂自然图像下鲁棒性不高的问题,提出了一种结合吸收Markov链和流行排序的显著性检测算法。首先计算灰度图像的熵值得到超像素分割数目,然后分两阶段进行显著性检测。在第1阶段,首先对边缘超像素进行预处理,再使用背景先验进行基于吸收Markov链随机游走的显著性检测;在第2阶段,使用第1阶段计算的区域显著值作为前景查询种子用于流行排序对检测结果进一步优化。在公开数据集ASD和ECSSD上的实验结果表明:与现有显著性检测算法对比,该算法可以准确地突出显著目标,并有效地抑制背景,同时在F-measure等指标上也有很大改善。
中图分类号:
[1] |
Borji A, Itti L . State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35:185-207.
doi: 10.1109/TPAMI.2012.89 pmid: 22487985 |
[2] | Borji A, Cheng M M, Jiang H , et al. Salient object detection:a survey[J]. Eprint Arxiv, 2014,16(7):3118-3121. |
[3] | Li Y, Hou X D, Koch C. The secrets of salient object segmentation [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 280-287. |
[4] |
Christopoulos C, Skodras A, Ebrahimi T . The JPEG2000 still image coding system: an overview[J]. IEEE Transaction on Consumer Electronics, 2000,46(4):1103-1127.
doi: 10.1109/30.920468 |
[5] | Chen T, Cheng M M, Tan P , et al. Sketch2Photo:internet image montage[J]. ACM Transactions on Graphics, 2009,28(5):1-10. |
[6] | Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Miami, 2009: 1597-1604. |
[7] | Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162. |
[8] | Li X, Li Y, Shen C, et al, Contextual hypergraph modeling for salient object detection [C]//IEEE International Conference on Computer Vision, Sydney, 2013: 3328-3335. |
[9] | Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 853-860. |
[10] | Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: contrast based filtering for salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 733-740. |
[11] |
Cheng M M, Mitra N J, Huang X L , et al. Global contrast based salient region detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015,37(3):569-582.
doi: 10.1109/TPAMI.2014.2345401 pmid: 26353262 |
[12] | Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors [C]//European Conference on Computer Vision, Berlin, 2012: 29-42. |
[13] | Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013,9(4):3166-3173. |
[14] | Jiang B, Zhang L H, Lu H C , et al. Saliency detection via absorbing Markov chain[J/OL].[2017-07-15].. |
[15] | Zhang Jian-ming, Sclaroff Stan, Lin Zhe, et al. Minimum barrier salient object detection at 80 FPS [C]//IEEE International Conference on Computer Vision,Santiago, Chile, 2015: 1404-1412. |
[16] | Zhu W, Liang S, Wei Y, et al. Saliency optimization from robust background detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821. |
[17] | Hou X D, Zhang L Q. Saliency detection: a spectral residual approach [C]//IEEE International Conference on Computer Vision and Pattern Recognitions, Minneapolis, 2007: 1-8. |
[18] |
Itti L, Koch C, Niebur E . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
doi: 10.1109/34.730558 |
[19] | Harel J, Koch C, Perona P . Graph-based visual saliency[J]. Advances in Neural Information Processing System, 2006,19:545-552. |
[20] | Cheng M M, Warrell J, Lin W Y , et al. Efficient salient region detection with soft image abstraction[DB/OL].[2017-07-16].. |
[21] | Tong N, Lu H, Xiang R, et al. Salient object detection via bootstrap learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Washington DC,USA, 2015: 1884-1892. |
[22] | Yang J, Yang M H. Top-down visual saliency via joint crf and dictionary learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, 2012: 2296-2303. |
[23] |
Radhakrishna A, Appu S, Kevin S , et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706 |
[24] | Tatler B W . The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions[J]. Journal of Vision, 2007,7(14):1-17. |
[25] | 谢畅, 朱恒亮, 林晓 , 等. 基于对比度优化流行排序的显著性目标检测算法[J]. 计算机应用, 2017,37(3):684-690. |
Xie Chang, Zhu Heng-liang, Lin Xiao , et al. Salient target detection algorithm based on contrast optimized manifold ranking[J]. Journal of Computer Applications, 2017,37(3):684-690. | |
[26] |
曹向海, 邓湖明, 黄波 . 背景感知的显著性检测算法[J]. 系统工程与电子设计, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35 |
Cao Xiang-hai, Deng Hu-ming, Huang Bo . Background aware saliency detection[J]. Systems Engineering and Electronics, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35 |
|
[27] |
吕建勇, 唐振民 . 一种改进的马尔科夫吸收链显著性目标检测方法[J]. 南京理工大学学报:自然科学版, 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007 |
Lv Jian-yong, Tang Zhen-min . Improved salient object detection based on absorbing Markov chain[J]. Journal of Nanjing University of Science and Technology(Natural Sciences), 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007 |
[1] | 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985. |
[2] | 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999. |
[3] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[6] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[7] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[8] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[9] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[10] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[11] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[14] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[15] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
|