吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1920-1928.doi: 10.13229/j.cnki.jdxbgxb20180907

• • 上一篇    下一篇

丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响

王乔(),孙万臣,郭亮(),程鹏,范鲁艳,李国良   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2018-09-07 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 郭亮 E-mail:723320413@qq.com;liangguo@jlu.edu.cn
  • 作者简介:王乔(1991-),男,博士研究生.研究方向:内燃机工作过程优化与排放控制.E-mail:723320413@qq.com
  • 基金资助:
    国家自然科学基金项目(51476069);吉林省自然科学基金项目(20180101059JC);吉林省省级产业创新专项资金项目(2019C058-3)

Effects of butanol/diesel blends on combustion and particulate emission characteristics of compression ignition engine

Qiao WANG(),Wan-chen SUN,Liang GUO(),Peng CHENG,Lu-yan FAN,Guo-liang LI   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2018-09-07 Online:2019-11-01 Published:2019-11-08
  • Contact: Liang GUO E-mail:723320413@qq.com;liangguo@jlu.edu.cn

摘要:

在一台高压共轨增压中冷四缸柴油机上试验研究了不同工况下,不同掺混比例的丁醇/柴油混合燃料对发动机燃烧及微粒排放特征的影响。结果表明:随着丁醇掺混比的增加,滞燃期延长,预混合燃烧量增加,燃烧相位滞后,且小负荷工况下的影响更为明显。丁醇/柴油混合燃料可在不增加NO x 排放的前提下,显著降低排气烟度及微粒排放,但指示热效率较纯柴油略有降低。发动机燃用丁醇/柴油混合燃料的微粒排放绝大多数为超细微粒,比例超过99%;随着丁醇比例的增大,发动机各粒径段微粒数量浓度均有所下降,大负荷工况更为明显。废气再循环(EGR)的引入使得积聚态微粒和总微粒数量浓度明显增加,丁醇的加入使得混合燃料对EGR的耐受性增强。丁醇/柴油混合燃料结合EGR策略可同时降低发动机的NO x 和微粒排放。

关键词: 动力机械及工程, 压燃式发动机, 丁醇/柴油混合燃料, 微粒排放特征

Abstract:

The effects of butanol/diesel blends on engine combustion and particulate emission characteristics under different operating conditions and blended ratios were investigated on a four-cylinder, common rail, turbocharged diesel engine. The results indicates that the increase in butanol blended ratio leads to prolonged ignition delay, increased premixed combustion and delayed combustion phase, the effect of which is more significant under low load conditions. Butanol/diesel fuel can dramatically reduce exhaust smoke and particulate emissions without increasing NO x emissions, however, the thermal efficiency is slightly lower than that of pure diesel. Most of the particulate emissions from butanol/diesel blended fuel are ultrafine particles, with a ratio of more than 99%. With the increase in butanol ratio, the number concentration of particles in each particle diameter range decreases, which is more distinctive under high load condition. The concentration of accumulated particles and total particles increase significantly with the introduction of Exhaust Gas Re-circulation (EGR). However, the addition of butanol enhanced the tolerance of the mixed fuel to EGR. Butanol/diesel blend fuel combined with EGR strategy can reduce NO x and particulate emissions simultaneously.

Key words: power machinery and engineering, compression ignition engine, butanol/diesel blends, particle emission characteristics

中图分类号: 

  • TK421.2

表1

发动机主要技术参数"

项 目 指标
型式 4缸、4冲程、增压中冷
(缸径×行程)/(mm×mm) 93×102
排量/L 2.771
压缩比 17.2∶1
燃油供给系统 高压共轨
喷油器喷孔数目 6
喷射锥角/(°) 150
喷孔直径/mm 0.13
[标定功率/转速]/[kW/(r·min-1)] 80/3400
[最大转矩/转速]/[(N·m)/(r·min-1)] 260/1800

表2

试验燃料理化特性"

项目 柴油 正丁醇 B10 B30
密度(15 ℃)/(kg·m-3 821.9 810.9 820.0 816.8
C质量分数/% 84.7 64.9 82.72 78.76
H质量分数/% 13.2 13.5 14.08 13.16
O质量分数/% 0 21.6 2.07 6.73
十六烷值 52 25 47.8 37.3
沸点/℃ 180~230 117.5 - -
低热值/(MJ·kg-1 43.85 33.1 42.62 40.42
汽化潜热/(kJ·kg-1 270 582 300 362.6

图1

试验台架示意图"

图2

丁醇掺入比例对缸压及放热率的影响对比"

图3

不同掺混比例丁醇/柴油混合燃料预混合燃烧量比对比"

图4

不同掺混比例丁醇/柴油混合燃料燃烧特征参数对比"

图5

不同掺入比例丁醇/柴油混合燃料排放特性对比"

图6

丁醇/柴油混合燃料微粒排放粒度分布特性"

图7

丁醇/柴油混合燃料不同模态微粒数量浓度对比"

图8

EGR对丁醇/柴油混合燃料微粒排放粒度分布特性的影响"

图9

EGR对丁醇/柴油混合燃料不同模态微粒数量浓度的影响"

1 Jin C , Yao M F , Liu H F , et al . Progress in the production and application of n-butanol as a biofuel[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4080-4106.
2 郑尊清, 李善举, 刘海峰, 等 . 正丁醇燃料特性对柴油机低温燃烧影响的机理[J]. 内燃机学报, 2013, 31(2): 97-102.
2 Zheng Zun-qing , Li Shan-ju , Liu Hai-feng , et al . Mechanism of effects of n-butanol properties on low temperature combustion in a diesel engine[J]. Transactions of CSICE, 2013, 31(2): 97-102.
3 Li J , Chen X R , Qi B K , et al . Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process[J]. Bioresource Technology, 2014, 169: 251-257.
4 Kheyrandish M , Asadollahi M A , Jeihanipour A , et al . Direct production of acetone-butanol-ethanol from waste starch by free and immobilized Clostridium acetobutylicum[J]. Fuel, 2015, 142: 129-133.
5 Moss J T , Berkowitz A M , Oehlschlaeger M A , et al . An experimental and kinetic modeling study of the oxidation of the four isomers of butanol[J]. Journal of Physical Chemistry A, 2008, 112(43): 10843-10855.
6 Sarathy S M , Thomson M J , Togbé C , et al . An experimental and kinetic modeling study of n-butanol combustion[J]. Combustion and Flame, 2009, 156(4): 852-864.
7 Sarathy S M , Vranckx S , Yasunaga K , et al . A comprehensive chemical kinetic combustion model for the four butanol isomers[J]. Combustion and Flame, 2012, 159(6): 2028-2055.
8 Wei H Q , Feng D G , Pan J Y , et al . Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate[J]. Energy, 2017, 118: 190-196.
9 Wallner T , Frazee R . Study of regulated and non-regulated emissions from combustion of gasoline , alcohol fuels and their blends in a Di-Si engine[C]∥SAE Papers, 2010-01-1571.
10 Rakopoulos D C , Rakopoulos C D , Giakoumis E G , et al . Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine[J]. Energy Conversion and Management, 2010, 51(10): 1989-1997.
11 Gu X L , Li G , Jiang X , et al . Experimental study on the performance and emissions from a low-speed light-duty diesel engine fueled with n-butanol-diesel and isobutanol-diesel blends[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(2): 261-271.
12 Yao M F , Wang H , Zheng Z Q , et al . Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions[J]. Fuel, 2010, 89(9): 2191-2201.
13 楼狄明, 徐宁, 范文佳, 等 . 国Ⅴ柴油机燃用丁醇-柴油混合燃料颗粒粒径分布特性试验研究[J]. 环境科学, 2014, 35(2): 526-532.
13 Lou Di-ming , Xu Ning , Fan Wen-jia , et al . Particulate distribution characteristics of chinese phrase V diesel engine based on butanol-diesel blends[J]. Environmental Science, 2014, 35(2): 526-532.
14 Cheng X B , Li S , Yang J , et al . Effect of n-butanol-diesel blends on partially premixed combustion and emission characteristics in a light-duty engine[C]∥SAE Papers, 2014-01-2675.
15 瞿磊, 王忠, 胡慧慧, 等 . 正丁醇对柴油机颗粒组分与形貌特征的影响[J]. 环境科学研究, 2015, 28(10): 1518-1523.
15 Qu Lei , Wang Zhong , Hu Hui-hui , et al . Effects of butanol on components and morphology of particles emitted by diesel engines[J]. Research of Environmental Sciences, 2015, 28(10):1518-1523.
16 孙万臣, 李鹏磊, 郭亮, 等 . 喷油参数对丁醇/柴油混合燃料燃烧及排放影响[J]. 内燃机学报, 2017, 35(5): 385-392.
16 Sun Wan-chen , Li Peng-lei , Guo Liang , et al . Effects of injection parameters on combustion and emissions on a butanol/diesel blend engine[J]. Transactions of CSICE, 2017, 35(5): 385-392.
17 郭亮, 杨文昭, 王云开, 等 . 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报: 工学版, 2017, 47(6): 1767-1774.
17 Guo Liang , Yang Wen-zhao , Wang Yun-kai , et al . Effects of EGR on performance and emission of an internal combustion engine fueled with butanol-diesel blends[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1767-1774.
18 Myung C L , Ko A , Park S . Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1[J]. International Journal of Automotive Technology, 2014, 15(2): 203-218.
19 Ken D , Lang T , Albert J L , et al . Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure[J]. Particle and Fibre Toxicology, 2005, 2(1): 10.
20 Wadumesthrige K , Ng K Y S . Properties of butanol-biodiesel-ULSD ternary mixtures[C]∥SAE Papers,2010-01-2133.
21 Du J , Sun W , Guo L , et al . Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends[J]. Energy Conversion and Management, 2015, 100: 300-309.
[1] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
[2] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[4] 刘忠长, 孙士杰, 田径, 徐瑞辰, 汪泊舟. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报(工学版), 2014, 44(6): 1639-1646.
[5] 包堂堂, 胡宗杰, 胡俊超, 阮逸平, 邓俊, 吴志军. 基于超声雾化的柴油/汽油混合燃料液滴群燃烧特性[J]. 吉林大学学报(工学版), 2013, 43(04): 903-908.
[6] 于秀敏,谭兴闻,马君,李国良,董伟,齐万强,崔峰云. 缸内直喷汽油机起动控制[J]. 吉林大学学报(工学版), 2011, 41(6): 1554-1558.
[7] 刘成材,高青,马纯强,金英爱,李玥. 发动机可变组分进气系统的膜气体分离特性[J]. 吉林大学学报(工学版), 2010, 40(03): 625-0629.
[8] 刘发发,谷艳华,彭亚平,李华,郭英男 . 乙醇均质压燃燃烧的化学反应动力学模拟[J]. 吉林大学学报(工学版), 2009, 39(01): 21-26.
[9] 方显忠,李国良,阎淑芳,刘巽俊 . 甲醇喷射定时对甲醇柴油双燃料
压燃式发动机性能的影响
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 80-0084.
[10] 孙万臣,刘忠长,刘巽俊,宫本 登,小川 英之,河辺 隆夫. 燃料特性对小型压燃式发动机增负荷工况燃烧及HC排放的影响[J]. 吉林大学学报(工学版), 2005, 35(02): 131-0135.
[11] 方显忠,刘巽俊,李国良,徐 超. 缸内双直喷系统压燃式试验机的开发[J]. 吉林大学学报(工学版), 2005, 35(01): 34-0038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[2] 刘晓丽,方建勇,蒋蔓,李志英,刘凤岐 . 透闪石/尼龙1010复合材料
等温结晶动力学研究
[J]. 吉林大学学报(工学版), 2008, 38(02): 298 -0302 .
[3] 裴玉龙,王永岗,杨光 . 评价交通系统与城市发展适应性的改进层次分析算法[J]. 吉林大学学报(工学版), 2008, 38(01): 42 -47 .
[4] 孙亮,王珺,韩平畴 . 电纺制备PCL纳米纤维材料及对其直径测量的修正方法[J]. 吉林大学学报(工学版), 2008, 38(06): 1305 -1309 .
[5] 郭伟, 赵熹华, 宋敏霞, 冯吉才, 杨飚 . 装配间隙对膨胀压差法扩散连接压力的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 22 -24 .
[6] 戴路,金光,陈涛 . 自适应扩展卡尔曼滤波在卫星姿态
确定系统中的应用
[J]. 吉林大学学报(工学版), 2008, 38(02): 466 -0470 .
[7] 陈巧霞,王树勋,汪飞 . 基于四元数模型的二维三次非线性
相位耦合频率估计方法
[J]. 吉林大学学报(工学版), 2007, 37(05): 1181 -1186 .
[8] 刘寒冰;张淼;魏健 . 结构动力响应分析的多重网格方法[J]. 吉林大学学报(工学版), 2008, 38(03): 619 -0623 .
[9] . 吉林大学学报(工学版)第38卷 增刊2008年2月[J]. 吉林大学学报(工学版), 2008, 38(增刊): 0 -0224 .
[10] 曲昭伟,王殿海,姚荣涵 . 信号交叉口起动波的运动学模型[J]. 吉林大学学报(工学版), 2008, 38(02): 268 -0272 .