吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1617-1626.doi: 10.13229/j.cnki.jdxbgxb20190493

• 车辆工程·机械工程 • 上一篇    

一种用于轴承故障诊断的迁移学习模型

张根保1,2,3(),李浩1,冉琰1,2(),李裘进1   

  1. 1.重庆大学 机械工程学院, 重庆 400044
    2.重庆大学 机械传动国家重点实验室, 重庆 400044
    3.重庆文理学院 智能制造工程学院, 重庆 402160
  • 收稿日期:2019-05-20 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 冉琰 E-mail:gen.bao.zhang@263.net;ranyan@cqu.edu.cn
  • 作者简介:张根保(1953-),男,教授,博士生导师.研究方向:先进制造技术,计算机集成制造系统,数控机床可靠性.E-mail:gen.bao.zhang@263.net
  • 基金资助:
    国家自然科学基金项目(51705048)

A transfer learning model for bearing fault diagnosis

Gen-bao ZHANG1,2,3(),Hao LI1,Yan RAN1,2(),Qiu-jin LI1   

  1. 1.College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
    2.State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
    3.School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
  • Received:2019-05-20 Online:2020-09-01 Published:2020-09-16
  • Contact: Yan RAN E-mail:gen.bao.zhang@263.net;ranyan@cqu.edu.cn

摘要:

基于人工神经网络的智能故障诊断方法能有效识别设备的健康状况,但传统人工神经网络需要大量有标签样本进行训练,这极大限制了人工神经网络在设备故障诊断中的应用,并且对于不同工况的适应性较差。为解决该问题,提出了一种基于迁移学习理论的轴承故障诊断模型,该模型由栈式稀疏自动编码器(SAE)和柔性最大值函数(Softmax)回归组成,引入高阶KL散度(HKL)训练域自适应能力,可从具有大量已知数据的工况迁移到仅有少量数据的相似工况中。当工况改变时,仅需少量数据进行训练即可适应新工况。采用凯斯西储大学公开的轴承实验数据集验证了该模型的有效性。

关键词: 故障诊断, 人工神经网络, 迁移学习, 自动编码器

Abstract:

Fault diagnosis technology can be used to detect the potential fault of the equipment by analyzing and detecting the signal, so as to ensure the operation safety and effectively improve the operation efficiency of the equipment. The bearings are widely used in rotating machinery and equipment. The fault of the bearings may seriously affect the normal operation of equipment, and inflict economic damage, even endanger the safety of staff. Therefore, it is of great theoretical and practical significance to monitor the health status of the bearing, find out the fault location and analyze its severity in time. In the actual engineering conditions, the operating environment and workspace of mechanical equipment are characterized by complexity and variability. The intelligent fault diagnosis method based on Artificial Neural Network (ANN) can effectively identify the health status of equipment, but the traditional ANN requires a large number of labeled samples for training, which greatly limits its application in equipment fault diagnosis. Also its adaptability to different working conditions is poor. In order to solve this problem, this article proposed a model of bearing fault diagnosis based on transfer learning theory. The model consists of stacked sparse AutoEncoder (SAE) and flexible maximum function (Softmax) regression. In this model, high order KL divergence (HKL) is used to train domain adaptive ability, which can transfer the working condition with a large number of known data to the similar condition with a small amount of data. Only a small amount of data is needed to train the model to adapt to the new working condition. The experimental data set of bearing from Case Western Reserve University was used to verify the effectiveness of the model.

Key words: fault diagnosis, artificial neural network, transfer learning, autoencoder

中图分类号: 

  • TH17

表1

相关符号和含义"

符号意义符号意义
XsXt源域/目标域数据集ysiyti源域/目标域样本的标签
xsxt源域/目标域样本NinNout自动编码器输入/输出维数
μsnμtn源域/目标域数据集的n阶矩kskt源域/目标域样本数
hs(i)ht(i)源域/目标域在第i层编码器的编码特征矩阵δHKL散度的最大阶数

图1

故障诊断网络训练流程"

表2

每个域的详细信息"

工况(域)载荷(HP)转速/ (r·min-1样本数数据点数(每个样本)健康状态
017975000120010
117725000120010
217505000120010
317305000120010

图2

预处理样本"

图3

不同δ值的测试结果"

图4

Nin和Nout不同取值测试结果"

图5

λ2和λ3不同取值测试结果"

图6

两种网络训练方法性能对比"

表3

不同方法在Ⅰ-Ⅱ中的诊断精度 (%)"

健康状态方法1方法2方法3方法4方法5方法6
平均55.1581.9989.4696.1197.1499.47
N100.00100.00100.00100.00100.00100.00
IF1850.9780.5488.5295.1896.9799.34
IF3643.4875.6882.9494.7396.0099.19
IF5449.6979.3785.6695.5496.3999.19
OF1850.3980.2687.9392.8997.2899.58
OF3652.8781.3989.3297.1997.6799.69
OF5451.9678.3490.1196.4697.0599.44
BF1847.8480.9687.4495.3396.3199.34
BF3651.9581.1491.2897.1797.2299.46
BF5452.3482.2591.3996.5896.5499.45

表4

三组训练样本的详细信息"

训练样本源域样本容量目标域样本容量健康状态数
4000100010
400075010
400050010

表5

不同样本容量下不同方法在不同迁移工况下的诊断精度 (%)"

方法训练样本Ⅰ-ⅡⅠ-ⅢⅠ-ⅤⅡ-ⅠⅡ-ⅢⅡ-ⅤⅢ-ⅠⅢ-ⅡⅢ-ⅤⅤ-ⅠⅤ-ⅡⅤ-Ⅲ平均
TSAE89.4688.3387.9188.9788.7788.1988.3988.8288.4488.0988.2488.3788.50
87.9486.4284.6184.2183.8984.7785.6284.9583.9483.7184.5683.7484.86
84.2183.7981.3381.0780.4282.0483.7481.8680.6981.3682.0180.9781.96

SAE+

Softmax+

KL

96.1190.9492.4497.3896.5192.6897.9196.9998.0091.3693.9898.7495.25
95.8390.6192.1497.0596.1892.3097.6696.7297.0891.1993.5998.6694.92
94.6989.1191.0996.5295.4491.0096.9295.5396.0790.7691.9997.4893.88
FTNN97.1497.4989.1698.0098.6498.2897.5198.4199.3192.9497.9998.1896.92
96.9495.1889.0297.8898.2197.9997.2398.1999.2692.8397.8898.1096.56
94.2994.6888.3396.6897.6497.6995.9097.7397.8892.4297.3997.6695.69

SAE+

Softmax+

HKL

99.4799.3599.6299.1998.9898.4799.2998.9699.6499.6098.3999.5199.21
99.1199.2799.4998.8698.4298.4499.1098.5999.4399.1497.9899.3498.93
98.9499.1699.2797.8797.7197.3198.9497.8798.9398.0697.5498.2298.32
1 Yin J L, Wang W Y, Man Z H, et al. Statistical modeling of gear vibration signals and its application to detecting and diagnosing gear faults[J]. Information Sciences, 2014, 259: 295-303.
2 Li W, Zhu Z C, Jiang F, et al. Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method[J]. Mechanical Systems and Signal Processing, 2015, 50/51: 414-426.
3 Shen C Q, Wang D, Kong F R, et al. Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier[J]. Measurement, 2013, 46(4): 1551-1564.
4 马辉, 车迪, 牛强, 等. 基于深度神经网络的提升机轴承故障诊断研究[J]. 计算机工程与应用, 2019(16): 123-129.
Ma Hui, Che Di, Niu Qiang, et al. Fault diagnosis of elevator bearing based on deep neural network[J]. Computer Engineering and Applications, 2019(16): 123-129.
5 刘文朋, 廖英英, 杨绍普, 等. 一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法[J]. 振动与冲击, 2019, 38(2): 146-151, 163.
Liu Wen-peng, Liao Ying-ying, Yang Shao-pu, et al. Fault diagnosis of rolling bearings based onmultipoint kurtosis spectrums and the maximum correlated kurtosis deconvolution method[J]. Journal of Vibration and Shock, 2019, 38(2): 146-151, 163.
6 郝研, 王太勇, 万剑, 等. 基于经验模式分解和广义维数的机械故障诊断[J]. 吉林大学学报: 工学版, 2012, 42(2): 392-396.
Hao Yan, Wang Tai-yong, Wan Jian, et al. Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(2): 392-396.
7 高立新, 张建宇, 崔玲丽, 等. 基于小波分析的低速重载设备故障诊断[J]. 机械工程学报, 2005, 41(12): 222-227.
Gao Li-xin, Zhang Jian-yu, Cui Ling-li, et al. Research on fault diagnosis technology of low speed and heavy duty equipments based on wavelet analysis[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 222-227.
8 李文军, 张洪坤, 程秀生. 基于小波和神经网络的传感器故障诊断[J]. 吉林大学学报: 工学版, 2004, 344(3): 491-495.
Li Wen-jun, Zhang Hong-kun, Cheng Xiu-sheng. Sensor fault diagnosis based on wavelet and neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2004, 34(3): 491-495.
9 Jia F, Lei Y G, Lin J, et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 303-315.
10 牟亮, 王凯, 李彦, 等. 层叠P阶多项式主成分分析在轴承故障诊断中的应用[J]. 振动与冲击, 2019, 38(2): 25-32.
Mu Liang, Wang Kai, Li Yan, et al. Bearing fault diagnosis based on the stacked P-order polynomial principal component analysis[J]. Journal of Vibration and Shock, 2019, 38(2): 25-32.
11 程利军, 张英堂, 李志宁, 等. 基于时频分析及阶比跟踪的曲轴轴承故障诊断研究[J]. 振动与冲击, 2012, 31(19): 73-78.
Cheng Li-jun, Zhang Ying-tang, Li Zhi-ning, et al. Research on fault diagnose of main bearing based on time-frequency analysis and order tracking[J]. Journal of Vibration and Shock, 2012, 31(19): 73-78.
12 陶新民, 徐晶, 刘兴丽, 等. 基于最大小波奇异谱的轴承故障诊断方法[J]. 振动、测试与诊断, 2010, 30(1): 78-82.
Tao Xin-min, Xu Jing, Liu Xing-li, et al. Fault diagnosis of bearing using maximum wavelet singular spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(1): 78-82.
13 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
Zhuang Fu-zhen, Luo Ping, He Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39.
14 Zhang R, Tao H Y, Wu L F, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017(5): 14347-14357.
15 Han D M, Liu Q G, Fan W G. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95: 43-56.
16 Chen D M, Yang S, Zhou F N. Incipient fault diagnosis based on DNN with transfer learning[C]∥International Conference on Control, Automation and Information Sciences, Hangzhou, China, 2018: 303-308.
17 Karsten M B, Arthur G, Malte R, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57.
18 Lu W N, Liang B, Cheng Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2296-2305.
19 Wen L, Gao L, Li X Y. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144.
20 Ding Z M, Fu Y. Robust transfer metric learning for image classification[J]. IEEE Transactions on Image Processing, 2017, 26(2): 660-670.
21 Jiang L, Ge Z Q, Song Z H. Semi-supervised fault classification based on dynamic sparse stacked auto-encoders model[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 168: 72-83.
22 Zheng Y L, Wang T Z, Xin B, et al. A sparse autoencoder and softmax regression based diagnosis method for the attachment on the blades of marine current turbine[J]. Sensors, 2019, 19(4): 826.
23 Qian W W, Li S M, Wang J R. A new transfer learning method and its application on rotating machine fault diagnosis under variant working conditions[J]. IEEE Access, 2018(6): 1-11.
24 朱冰, 蒋渊德, 邓伟文, 等. 基于KL散度的驾驶员驾驶习性非监督聚类[J]. 汽车工程, 2018, 40(11): 1317-1323.
Zhu Bing, Jiang Yuan-de, Deng Wei-wen, et al. Unsupervised clustering of driving styles based on KL divergence[J]. Automotive Engineering, 2018, 40(11): 1317-1323.
25 Case Western Reserve University. Bearing data center[DB/OL]. [2019-04-28]. file
26 Yang B, Lei Y G, Jia F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706.
[1] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
[2] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[3] 宋大凤, 李广含, 张琳, 潘冰, 曾小华, 彭宇君, 王庆年. 模糊逻辑在混合动力汽车电机故障检测中的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
[4] 欧阳丹彤,迟晋进,王晓宇,赵相福,孟祥宇. 一种高阶离散事件系统的诊断方法[J]. 吉林大学学报(工学版), 2015, 45(2): 562-568.
[5] 陶涛,徐洪泽. 高速列车浸入与不变自适应容错控制方法[J]. 吉林大学学报(工学版), 2015, 45(2): 554-561.
[6] 宋宝玉,解志杰,张锋,王瑞泽,郝明晖,苏代忠. 基于角度域同步平均和阶次分析的低速斜齿轮故障诊断[J]. 吉林大学学报(工学版), 2015, 45(2): 454-459.
[7] 吴坚, 赵阳, 何睿. 基于支持向量机回归算法的电子机械制动传感器系统故障诊断[J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[8] 郝研, 王太勇, 万剑, 张攀, 刘路. 基于经验模式分解和广义维数的机械故障诊断[J]. 吉林大学学报(工学版), 2012, 42(02): 392-396.
[9] 陈筠翰1,秦贵和1,2,于赫1,黄玥1. 基于OSEK/VDX直接NM规范的车载网络系统[J]. 吉林大学学报(工学版), 2011, 41(05): 1407-1413.
[10] 孔繁森,吴雅夫,李聪. 基于信息熵的设备电气故障诊断复杂性评价[J]. 吉林大学学报(工学版), 2011, 41(03): 697-701.
[11] 贾志新, 张宏斌, 郗安民. 利用神经网络扩充数控机床可靠性数据[J]. 吉林大学学报(工学版), 2011, 41(02): 403-0407.
[12] 高印寒, 孙强, 丛玉良, 池俊成, 唐荣江. 基于神经网络的非稳态噪声品质的评价方法[J]. 吉林大学学报(工学版), 2010, 40(增刊): 110-0114.
[13] 夏红伟, 凌明祥, 李莉, 马闯, 王礼. 不确定网络控制系统鲁棒故障诊断[J]. 吉林大学学报(工学版), 2010, 40(02): 501-0505.
[14] 殷涌光,丁筠. 基于计算机视觉的食品中大肠杆菌快速定量检测[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 344-0348.
[15] 刘玉梅,苏建,曹晓宁,熊伟,宋学忠. 基于模糊数学的汽车悬架系统故障诊断方法[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 220-0224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!