吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 72-82.doi: 10.13229/j.cnki.jdxbgxb20190955

• 车辆工程·机械工程 • 上一篇    下一篇

基于开绕组电机的增程式电动车动力系统构型及其功率分配

初亮1(),董力嘉1,许楠1(),张立峰2,贾一帆1,杨志华1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.上汽集团商用车技术中心,上海 200438
  • 收稿日期:2019-08-09 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 许楠 E-mail:chuliang@jlu.edu.cn;nanxu@jlu.edu.cn
  • 作者简介:初亮(1967-),男,教授,博士生导师.研究方向:节能与新能源汽车.E-mail:chuliang@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51805201)

Powertrain configuration and power distribution of extended electric vehicle based on open winding motor

Liang CHU1(),Li-jia DONG1,Nan XU1(),Li-feng ZHANG2,Yi-fan JIA1,Zhi-hua YANG1   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.SAIC MOTOR Commercial Vehicle Technical Center,Shanghai 200438,China
  • Received:2019-08-09 Online:2021-01-01 Published:2021-01-20
  • Contact: Nan XU E-mail:chuliang@jlu.edu.cn;nanxu@jlu.edu.cn

摘要:

为利用开绕组永磁同步电机在双能量源间功率分配的灵活性,提出一种新型电动汽车动力系统构型,实现了从功率分配指令形成到指令跟随的过程。首先提出基于模糊控制的期望功率计算方法,使主能量源工作在高效区,并在电机控制层面基于双逆变器电压矢量模型,然后提出精确功率跟随、线性分配两种分配方法,实现主、次能量源期望功率的跟随。仿真结果表明:在电压矢量分配方法下,电机转速、转矩跟随效果良好,且转矩波动幅度限制在3 N·m以内。

关键词: 增程式电动车辆, 开绕组电机, 模糊控制, 矢量控制, 功率分配

Abstract:

A new type of electric vehicle powertrain configuration was proposed in order to make use of the flexibility of open-winding permanent magnet synchronous motor in power distribution between dual energy sources, and realized the process from power distribution instruction formation to instruction following under this configuration. First, an expected power calculation method based on fuzzy control is proposed to make the main energy source work in high efficiency zone. Then, at the level of motor control, based on the voltage vector model of dual inverters, two distribution methods, namely precise power following and linear distribution, are proposed to realize the expected power following of primary and secondary energy sources. The simulation results show that under the voltage vector distribution method, the motor speed and torque follow well, and the torque fluctuation is limited within 3 N·m.

Key words: extended-range electric vehicles, open winding motor, fuzzy control, vector control, power allocation

中图分类号: 

  • TM351

图1

基于开绕组电机的增程式电动车辆"

图2

逆变器1的期望功率计算图"

图3

输入、输出隶属函数曲线"

表1

模糊规则"

SOC需求功率逆变器1期望功率
较低
较高
较高
较低
较高较高
较高
较低
较高较高

图4

模糊规则曲面图"

表2

整车参数"

参数数值
长×宽×高/mm×mm×mm4600×1785×1435
整备质量/kg1550
满载质量/kg1930
迎风面积/m22.56
空气阻力系数0.28
轮胎滚动半径/mm307
电池组持续放电功率/kW660
滚动阻力系数0.015
减速器总速比88.28
发动机额定功率/kW555
传动系效率0.95
电机最大功率/kW80

图5

需求功率分配图"

图6

双逆变器系统模型图"

图7

双逆变器电压矢量合成过程"

图8

电压矢量分布和功率分配示意图"

图9

扇区划分和电压矢量合成"

表3

扇区划分"

Nθ/(o)Nθ/(o)
1[0,60]4[180,240]
2[60,120]5[240,300]
3[120,180]6[300,360]

表4

各扇区对应解析式"

扇区号解析表达式扇区号解析表达式
1y=-3x+2Vdc4y=-3x-2Vdc
2y=2/2Vdc5y=-2/2Vdc
3y=3x+2Vdc6y=3x-2Vdc

图10

精确功率跟踪方法实例"

图11

线性分配法实例"

图12

电压矢量分配方法选择策略流程图"

图13

开绕组电机驱动系统配置方案"

表5

驱动系统基本参数"

对 象类 型参 数
求解器求解类型离散系统
采样时间 Ts/s5 × 10-7
电机电机类型永磁同步电机
极对数p04
定子电阻Rs0.1
永磁磁链的基本幅值ψf/Wb0.2
额定转速/(r·min-1)8000
额定转矩/(N·m)85
最大功率/kW80
d轴、q轴电感[Ld,Lq]/F[0.0012,0.0015]
转子的转动惯量Jm/(kg·m-2)0.011
库伦黏性阻力系数[0.001,0.0005]
逆变器导通电阻Ron0.01
前向压降Vf/V0.8
每相电流容量imax/A160
能量源主、次能量源直流母线电压[Vdc1,Vdc2]/V[300,200]

表6

电压矢量分配模式"

电压矢量

分配模式

具体情况模式号
精确功率跟随逆变器1功率跟随偏差DPinv1_AF=00
逆变器1功率跟随偏差DPinv1_AF0-1
线性分配方法逆变器1功率跟随偏差DPinv1_LP=0-2

逆变器1功率跟随偏差DPinv1_LP0

us*? 可以被合成

-3
us*?无法被合成-4

图14

需求功率分配曲线"

图15

电压矢量分配模式号"

图16

期望电机转速、实际电机转速曲线"

图17

电机期望转矩、电磁转矩、负载曲线"

1 沈启平. 车用高功率密度永磁同步电机的研究[D]. 沈阳:沈阳工业大学电气工程学院, 2012.
Shen Qi-ping. Research on high power density permanent magnet synchronous motor for vehicle[D]. Shenyang: School of electrical engineering, Shenyang University of Technology, 2012.
2 韩康. 电动汽车用永磁同步电机控制系统研究[D]. 大庆:东北石油大学电气信息工程学院, 2018.
Han Kang. Research on permanent magnet synchronous motor control system for electric vehicle[D]. Daqing: School of Electrical Information Engineering, Northeast Petroleum University, 2018.
3 蔡萍, 李永岗, 赵赫. 双三相永磁同步电机在电动汽车中的应用研究[J]. 微特电机, 2019, 47(1): 59-62, 69.
Cai Ping, Li Yong-gang, Zhao He. The application of dual three-phase permanent magnet synchronous motor in electric vehicle[J]. Small Special Electrical Machines, 2019, 47(1): 59-62, 69.
4 Kumar K V P, Kumar T V. An effective four-level Voltage switching state algorithm for direct torque controlled open end winding induction motor drive by using two two-level inverters[J]. Electric Power Components & Systems, 2017, 45(19): 2175-2187.
5 Kunisetti V P K, Kodumur Meesala R E, Thippiripati V K. Improvised predictive torque control strategy for an open end winding induction motor drive fed with four-level inversion using normalized weighted sum model[J]. IET Power Electronics, 2018, 11(5): 808-816.
6 Vinod B R, Baiju M R, Shiny G. Five level inverter fed space vector based direct torque control of open-end winding induction motor drive[J]. IEEE Transactions on Energy Conversion, 2018, 33(3):1392-1401.
7 Sandulescu P, Meinguet F, Kestelyn X, et al. Control strategies for open-end winding drives operating in the flux-weakening region[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4829-4842.
8 Vinod B R, Baiju M R, Shiny G. Five level inverter fed space vector based direct torque control of open-end winding induction motor drive[J]. IEEE Transactions on Energy Conversion, 2018, 33(3):1392-1401.
9 周文志. 混合逆变器开绕组永磁同步电机容错控制技术研究[D]. 杭州:浙江大学电气学院, 2016.
Zhou Wen-zhi. Fault-tolerant control technology of hybrid inverter open-winding permanent magnet synchronous motor [D]. Hangzhou:School of Electrical Engineering, Zhejiang University, 2016.
10 赵克, 安群涛, 孙力. 容错逆变器PMSM无位置传感器控制系统[J]. 电机与控制学报, 2010, 14(4): 25-30.
Zhao Ke, An Qun-tao, Sun Li. Fault tolerant inverter PMSM position sensorless control system[J]. Electric Machines and Control, 2010, 14(4): 25-30.
11 Park J S, Nam K. Dual inverter strategy for high speed operation of HEV permanent magnet synchronous motor[C]∥IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 2006: 488-494.
12 Priestley M, Fletcher J E, Tan C. Space-vector PWM technique for five-phase open-end winding PMSM drive operating in the over-modulation region[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 6816-6827.
13 林斌. 混合逆变器开绕组永磁同步电机驱动系统研究[D]. 杭州:浙江大学电气工程学院, 2015.
Lin Bin. Research on drive system of open-winding permanent magnet synchronous motor of hybrid inverter [D]. Hangzhou:School of Electrical Engineering, Zhejiang University, 2015.
14 Welchko B A. A double-ended inverter system for the combined propulsion and energy management functions in hybrid vehicles with energy storage[C]∥IEEE Industrial Electronics Society, Raleigh, NC, USA, 2005: 1401-1406.
15 Casadei D, Grandi G, Lega A, et al. Multilevel operation and Input power balancing for a dual two-level inverter with insulated DC sources[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1815-1824.
16 Chu L, Jia Y F, Chen D S, et al. Research on control strategies of an open-end winding permanent magnet synchronous driving motor(OW-PMSM)-equipped dual inverter with a switchable winding mode for electric vehicles[J]. Energies, 2017, 10(5): No 616.
17 Camara M B, Gualous H, Gustin F, et al. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 587-597.
18 Listwan J, Pieńkowski K. Field-oriented control of five-phase induction motor with open-end stator winding[J]. Archives of Electrical Engineering, 2016, 65(3): 395-410.
[1] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[2] 王伟, 王庆年, 田涌君, 王仁广, 温泉. 基于模糊控制功率分流式混合动力客车控制策略[J]. 吉林大学学报(工学版), 2017, 47(2): 337-343.
[3] 马蓓, 张海林, 张兆维, 钟鸣. 基于不完全信道信息的D2D功率分配算法[J]. 吉林大学学报(工学版), 2016, 46(4): 1320-1324.
[4] 聂海涛, 龙科慧, 马军, 张雷, 马喜强. 基于快速SIFT算法和模糊控制的人脸识别[J]. 吉林大学学报(工学版), 2016, 46(2): 549-555.
[5] 陈杰, 莫玮. 履带式移动机械臂的自适应模糊滑模控制[J]. 吉林大学学报(工学版), 2015, 45(3): 892-898.
[6] 马旭辉, 刘小明, 张金金. 考虑公交优先的过饱和交叉口交通信号控制[J]. 吉林大学学报(工学版), 2015, 45(3): 748-754.
[7] 董冰,田彦涛,周长久. 基于模糊逻辑的纯电动汽车能量管理优化控制[J]. 吉林大学学报(工学版), 2015, 45(2): 516-525.
[8] 赵晓晖, 沙京祺. 基于DF中继的认知OFDM协作系统的资源分配算法[J]. 吉林大学学报(工学版), 2014, 44(5): 1481-1487.
[9] 叶锦华,李迪,叶峰. 轮式移动机器人的双强化学习自适应模糊控制[J]. 吉林大学学报(工学版), 2014, 44(3): 742-749.
[10] 赵晓晖, 杨伟伟, 金晓光. 多中继OFDM系统选择性子载波中继和功率分配算法[J]. 吉林大学学报(工学版), 2014, 44(2): 478-484.
[11] 王庆年, 王俊, 陈慧勇, 曾小华, 唐先智. 混合动力车辆中的加速与制动意图识别[J]. 吉林大学学报(工学版), 2014, 44(2): 281-286.
[12] 李静, 余春贤. 基于模糊与PID的车辆底盘集成控制系统[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 509-513.
[13] 马文星, 刘彬, 刘春宝, 刘浩. 风力发电液力调速系统及其控制[J]. 吉林大学学报(工学版), 2013, 43(05): 1276-1283.
[14] 王小龍, 坂上岩太, 高橋健作, 岡村信吾. 基于端口分离的小型化Wilkinson功率分配器[J]. , 2012, 42(05): 1309-1314.
[15] 施玉晨, 白宝明. 基于叠加调制和自适应功率分配的干扰抵消[J]. 吉林大学学报(工学版), 2012, 42(01): 213-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!