吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 478-484.doi: 10.13229/j.cnki.jdxbgxb201402032

• 论文 • 上一篇    下一篇

多中继OFDM系统选择性子载波中继和功率分配算法

赵晓晖, 杨伟伟, 金晓光   

  1. 吉林大学 通信工程学院信息科学实验室, 长春 130012
  • 收稿日期:2013-02-25 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 杨伟伟(1988- ),女,硕士研究生.研究方向:协同无线通信的资源分配. E-mail:wwyang11@mails.jlu.edu.cn E-mail:wwyang11@mails.jlu.edu.cn
  • 作者简介:赵晓晖(1957- ),男,教授,博士生导师.研究方向:信号处理理论在通信中的应用. E-mail:xhzhao@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(61171079).

Selective subcarrier relaying and power allocation algorithm for multi-relay-assisted OFDM systems

ZHAO Xiao-hui, YANG Wei-wei, JIN Xiao-guang   

  1. Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2013-02-25 Online:2014-02-01 Published:2014-02-01

摘要:

对于多中继OFDM放大转发协作通信系统,在各个中继节点功率独立受限的条件下,中继节点转发子载波的数目较多时,每个子载波所能分配到的功率较少,而将此中继节点转发的部分子载波转由空闲的中继节点转发,可以获得更大的功率增益。为此,本文提出了一种改进算法。在中继节点距离源节点较近时,充分利用空闲中继节点的功率,提高系统容量,在中继节点距离源节点较远时,削减中继节点数目,降低系统复杂度。仿真结果表明,本文算法在中继节点距离源节点较近时获得了更大的系统容量,在中继节点距离源节点较远时,保持系统容量基本不变,降低系统复杂度,易于实现。

关键词: 通信技术, 多中继OFDM通信系统, 选择性子载波中继, 功率分配

Abstract:

For multi-relay-assisted Orthogonal Frequency Division Multiplexing (OFDM) cooperative systems with Amplify-and-Forward (AF) mode, when relay nodes are close to the source node, higher system gain can be achieved, otherwise, the system will get lower gain. Under the condition that each relay node has individual power constraint, the more subcarriers relay nodes forward, the less power of each sub-carrier is allocated. Greater power gain can be acquired when some of the sub-carriers are forwarded by idle relay nodes instead of the previous busy node. Therefore, we propose an improved algorithm. In this algorithm, when relay nodes are close to the source node, we make full use of the power of the free relay nodes to increase system capacity. When relay nodes are far from the source node, the relay node number is reduced to decrease system complexity. Simulation results show that the improved algorithm can obtain higher system capacity when the relay nodes are close to the source node, and it also can approximately maintain system capacity unchanged with lower system complexity when relay nodes are far from the source node.

Key words: communication, multi-relay-assisted OFDM communication systems, selective subcarrier relaying, power allocation

中图分类号: 

  • TN929

[1] Rayliu K J, Sadkea A, Su W F, et al. Cooperative Communications and Networking[M].Cambridge: Cambridge University Press, 2009.

[2] Cho Y S, Kim J, Yang W Y, et al. MIMO-OFDM Wireless Communications with Matlab[M]. New York: Wiley Press, 2010.

[3] Dang W, Tao M X, Mu H. Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems[J]. IEEE Transactions on Wireless Communications, 2010, 9(5):1640-1649.

[4] Hasna M O, Alouini M S. Optimal power allocation for relayed transmissions over rayleigh fading channels[J]. IEEE Transactions on Wireless Communications, 2004, 3(6):1999-2004.

[5] Hammerstrom I, Wittneben A. On the optimal power allocation for nonregenerative OFDM relay links[C]//IEEE International Conference on Communications, Istanbul, 2006.

[6] Zhou M Y, Li L H, Wang H F, et al. Sub-Carrier coupling for OFDM based AF multi-relay systems[C]//IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, 2007.

[7] Duval O, Hasan Z, Hossain E, et al. Subcarrier selection and power allocation for amplify-and-forward relaying over OFDM links[J]. IEEE Transactions on Wireless Communications, 2010, 9(4):1293-1297.

[8] Tao M X, Dang W B, Xiao Y. Joint subcarrier-relay assignment and power allocation for decode-and-forward multi-relay OFDM systems[C]//Fourth International Conference on Communications and Networking in China, Xian, 2009.

[9] Zhang X J, Gong Y. Joint power allocation and relay positioning in multi-relay cooperative systems[J]. IET Communications, 2009, 3(10):1683-1692.

[10] Shashika B, Upul G, Ranjith L. Selective subcarrier relaying and power allocation for multi-relay-assisted cooperative OFDM systems[C]//IEEE Communications Theory Workshop, Melbourne, 2011.

[11] Stephen B, Lieven V. Convex Optimization[M].Cambridge: Cambridge University Press, 2004.

[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!