吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 478-485.doi: 10.13229/j.cnki.jdxbgxb20200053

• 车辆工程·机械工程 • 上一篇    

大容差多柔性透镜组结构优化设计

张刘1(),郑潇逸1,张帆1(),赵宇2,赵书阳3   

  1. 1.吉林大学 仪器科学与电气工程学院,长春 130061
    2.长春理工大学 机电工程学院,长春 130022
    3.北京遥测技术研究所,北京 100094
  • 收稿日期:2020-01-23 出版日期:2021-03-01 发布日期:2021-02-09
  • 通讯作者: 张帆 E-mail:zhangliu@jlu.edu.cn;zhangfan1@jlu.edu.cn
  • 作者简介:张刘(1978-),男,教授,博士生导师.研究方向:航天光学遥感系统设计,仿真及应用技术,星敏感器技术.E-mail:zhangliu@jlu.edu.cn
  • 基金资助:
    科工局国防基础科研重点突破项目(JCKY2018****036);装备预研领域基金项目(JZX7Y20190254047001);国防基础科研计划项目(JCKY2019110);国家自然科学基金青年基金项目(61705221);吉林省产业技术研究与开发专项项目(2019C035-1);科工局国防基础科研项目(JCKY2017203C108)

Structural optimization design of large tolerance and multi⁃flexibility lens subassembly

Liu ZHANG1(),Xiao-yi ZHENG1,Fan ZHANG1(),Yu ZHAO2,Shu-yang ZHAO3   

  1. 1.College of Instrument and Electrical Engineering,Jilin University,Changchun 130061,China
    2.College of Mechanical Engineering,Changchun University of Science and Technology,Changchun 130022,China
    3.Research Institute of Telemetry,Beijing 100094,China
  • Received:2020-01-23 Online:2021-03-01 Published:2021-02-09
  • Contact: Fan ZHANG E-mail:zhangliu@jlu.edu.cn;zhangfan1@jlu.edu.cn

摘要:

为使透镜的面形精度在复杂工作环境下满足光学系统要求,利用CAE设计了多透镜组镜头的透镜柔性支座结构,并对其几何位置进行参数优化。首先,通过对比透镜支撑结构常用材料和加工制作工艺,选取透镜支座材料,根据光学设计结果采用定心车加工工艺保证光轴的直线度;然后,选取一适合柔性结构形式并根据其中心对称特点初步设计柔性支座;最后,将柔性结构几何位置进行参数化,并利用集成优化方法优化柔性支座结构形式。实验结果表明:单透镜组件在3个方向自重变形下及-10~50 ℃工况下的面形误差(RMS值)均优于λ/50;镜头组件和单透镜组件的一阶谐振频率不小于120 Hz。实验验证了镜头可同时在大温差、高频振动的环境下,满足镜头设计要求,结构稳定可靠。

关键词: 柔性支撑, 面形精度, 有限元仿真, 集成优化, 大温差

Abstract:

The flexible support structure of lens is designed by CAE, and the geometric position parameters are optimized in order to make the surface accuracy of lens meet the requirements of optical system in complex working environment. Firstly, by comparing the commonly used materials and processing technology of the lens support structure, the lens support material is selected, and according to the optical design results, the centering machining technology is used to ensure the straightness of the optical axis. Secondly the suitable flexible structure is chosen and the flexible support according to its central symmetry is designed. Finally, the geometric position of the flexible structure is parameterized, and the structural form of the flexible support is optimized by the integrated optimization method. The experimental results show that the surface shape error (RMS value) of the single lens module is better than λ/50 under three directions of self-weight deformation with temperature ranging from -10 ℃ to 50 ℃, and the first-order resonance frequency of the lens module and the single lens module is no less than 120 Hz. It is verified that the lens can meet the requirements of lens design in the environment of large temperature difference and high frequency vibration.

Key words: flexible support, surface accuracy, finite element simulation, integrated optimization, large temperature difference

中图分类号: 

  • TF303

表1

常用材料属性"

材料名称密度ρ/(103 kg·m-3弹性模量E/GPa比刚度(E/ρ)/106 m线胀系数α/(10-6·K-1导热率λ/(W·m-1·K)
TC44.4011425.909.107.40
2.706825.2025.00167.00
镁铝合金1.804022.2025.20201.00
铟钢8.9014115.802.6013.70
低体分SiC/Al3.0010033.3016.00155.00
高体分SiC/Al3.0018060.008.00225.00
K9/BK72.518232.677.101.10

图1

光学设计"

图2

透镜柔性支撑结构"

图3

单透镜柔性镜座"

图4

几何位置参数化分组"

图5

柔性压圈"

图6

优化后模型"

图7

单透镜装配模型"

表2

优化结果"

变量取值范围初始值优化值
1/(°)60<(A)<12011065
2/(°)60<(B)<120110116
3/mm0.3≤(D1)≤21.50.5
4/mm0.3≤(D2)≤21.50.5
5/mm0.3≤(H1)≤21.50.8
6/mm0.3≤(H2)≤21.50.8
RMSX/nm-0.2415.67
RMSY/nm-0.2495.77
RMSZ/nm-0.448.217
RMS(50 ℃)/nm-28.1879.565
RMS(-10 ℃)/nm-27.6179.464

图8

静力学面形云图"

表3

透镜组件面形精度分析结果"

工况载荷PV值/nmRMS值/nm
Temp_-1085.579.464
Temp_5081.2579.565
Grav_X29.975.67
Grav_Y30.1565.77
Grav_Z42.6348.217

图9

镜头组件模型"

表4

透镜组件前6阶模态分析结果"

序号模态/Hz振动形式
11549.790Move along Z-axis
21582.087Rotate along Y-axis
31582.709Rotate along X-axis
41997.240Move along X-axis
51997.872Move along Y-axis
62278.361Rotate along Z-axis

图10

透镜组件前6阶振型图"

图11

镜头总装图"

表5

检验结果"

项目技术要求检验结果
-10 ℃工况面形精度/nm<12.669.656
50 ℃工况面形精度/nm<12.669.81
X向重力面形精度/nm<12.665.194
Y向重力面形精度/nm<12.665.11
Z向重力面形精度/nm<12.668.468
焦距/mm112.5111.5
F5.65.42
视场角/(°)≥3434.2
分辨率/(p·mm-1)≥200l269l
通过率/%≥7081
1 薛向尧, 高云国. 卫星激光测距中主镜柔性支撑结构设及分析[J]. 电子测量与仪器学报, 2013, 27(8): 696-702.
Xue Xiang-yao, Gao Yun-guo. Design and analysis of a flexible support structure for the primary mirror of SLR[J]. Journal of Electronic Measurement and Instrment, 2013, 27(8): 696-702.
2 卢晓明. 空间大口径望远镜光机结构优化设计[D]. 北京: 中国科学院大学中国科学院上海技术物理研究所, 2018.
Lu Xiao-ming. Optimization design of space large aperture telescope optical machine structure[D]. Beijing: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2018.
3 黎代维. 基于响应面方法的反射镜背部支撑结构优化[D]. 北京: 中国工程物理研究院, 2019.
Li Dai-wei. Optimization design of space large aperture telescope optical machine structure[D]. Beijing: China Academy of Engineering Physics, 2019.
4 柯瑞. 空间反射镜镜片及其支撑结构分析与设计[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2010.
Ke Rui. Analysis and design of space mirror and support structure[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2010.
5 汪奎, 辛宏伟, 曹乃亮, 等. 空间相机快速反射镜的两轴柔性支撑结构设计[J]. 红外与激光工程, 2019, 48(12): 233-240.
Wang Kui, Xin Hong-wei, Cao Nai-liang, et al. Design of two-axis flexible support structure for fast steering mirror in space cameras[J]. Infrared and Laser Engineering, 2019, 48(12): 233-240.
6 孙宝玉. 光学反射镜柔性支撑结构尺寸稳定性分析[J]. 光电工程, 2009, 36(9): 142-145.
Sun Bao-yu. Stability analysis on the dimension of flexible supporting structure of the optical reflector[J]. Opto-Electronic Engineering, 2009, 36(9): 142-145.
7 马磊, 曹佃生, 刘承志. 大口径透镜多点柔性支撑结构设计与分析[J]. 光电工程, 2015, 42(5): 88-94.
Ma Lei, Cao Dian-sheng, Liu Cheng-zhi. Design and analysis on multi-points flexible supporting structure of large-aperture lens[J]. Opto-Electronic Engineering, 2015, 42(5): 88-94.
8 郄永军, 徐勇, 王方鹏.基于多岛遗传-模拟退火算法的气动外形优化[J].飞行力学, 2017, 35(5): 26-30.
Yong-jun Qie, Xu Yong, Wang Fang-peng. Aerodynamic shape optimization based on the hybrid MIGA-SA method[J]. Glight Dynamics, 2017, 35(5): 26-30.
9 王建国, 任建刚. 大口径精密光学元件柔性支撑结构设计和分析[J]. 煤炭技术, 2018, 37(7): 314-316.
Wang Jian-guo, Ren Jian-gang. Design and analysis of large diameter precision optics flexible supporting structure[J]. Coal Technology, 2018, 37(7): 314-316.
10 赵勇志, 曹玉岩, 韩西达, 等. 大口径透镜柔性支撑结构设计与分析[J]. 长春理工大学学报: 自然科学版, 2018, 41(5): 1-7.
Zhao Yong-zhi, Cao Yu-yan, Han Xi-da, et al. Design and mechanical analysis of the flexible mounting structure for the large aperture lens[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(5): 1-7.
11 王乃祥, 惠守文. 航空双波段相机胶粘主次镜柔性支撑结构设计[J]. 仪器仪表学报, 2014, 35():77-81.
Wang Nai-xiang, Hui Shou-wen. The flexible support structure design of the glued primary-secondary mirror of the aviation dual-band camera[J]. Chinese Journal of Scientific Instrument, 2014, 35(Sup.1): 77-81.
12 邵梦旗, 张雷, 李林, 等. 超轻反射镜柔性支撑结构设计与试验[J]. 光子学报, 2019, 48(12): 201-209.
Shao Meng-qi, Zhang Lei, Li Lin, et al. Designand test of flexible supporting structure for ultra-lilght mirror[J]. Acta Photonica Sinica, 2019, 48(12): 201-209.
13 汪纯鹏, 刘波. 大型空间相机柔性支撑结构的设计[J]. 长春理工大学学报: 自然科学版, 2019, 42(5): 1-4.
Wang Chun-peng, Liu Bo. Design of flexure support structure of large-scale space camera[J].Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(5): 1-4.
14 王辰忠, 胡中文, 陈忆, 等. 空间引力波望远镜主反射镜系统的结构设计优化[J/OL]. [2020-01-14].
15 吴欣宇. 基于ANSYS的柔性支撑结构随机振动分析[J]. 机械工程师, 2019(12): 40-42, 44.
Wu Xin-yu. Random vibration analysis of flexible support structure based on ANSYS[J]. Mechanical Engineer, 2019(12): 40-42, 44.
16 丁泉惠, 王森, 黄修长, 等. 基于有限元法和多岛遗传算法的飞轮结构参数优化设计[J]. 噪声与振动控制, 2016, 36(2): 56-60.
Ding Quan-hui, Wang Sen, Huang Xiu-chang, et al. Optimization design of flywheel structural parameters based on finite element analysis and MIGA method[J]. Noise and Vibration Control, 2016, 36(2): 56-60.
[1] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[2] 庄蔚敏,施宏达,解东旋,杨冠男. 钢铝异质无铆钉粘铆复合连接胶层厚度分布[J]. 吉林大学学报(工学版), 2020, 50(1): 100-106.
[3] 麻凯, 高继东, 闫磊, 徐涛. 基于碰撞胸压标定试验的仿真假人材料参数优选法[J]. 吉林大学学报(工学版), 2017, 47(5): 1498-1503.
[4] 程强, 张振东, 郭辉, 谢乃流. GDI喷油器电-磁-热耦合分析[J]. 吉林大学学报(工学版), 2015, 45(3): 806-813.
[5] 马尧, 董晓龙, 李泽君, 沈林, 赵宏伟. 不同接触零点对纳米压痕测试影响的有限元解析[J]. 吉林大学学报(工学版), 2014, 44(5): 1366-1370.
[6] 李国发, 韩明佐, 单翠云, 刘佳. 磁流变力矩传动装置的有限元仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(05): 1284-1289.
[7] 李国发, 张栋林, 龚金龙, 王利斌. ZrO2陶瓷激光加热辅助切削加工技术[J]. , 2012, (06): 1409-1414.
[8] 闫清东, 邹波, 魏巍. 液力减速器叶片前倾角度三维集成优化[J]. , 2012, 42(05): 1135-1139.
[9] 姜浩1,2, 郭学东2, 张艳辉2. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报(工学版), 2011, 41(05): 1279-1283.
[10] 赵宏伟,吴博达,程光明,刘国嵩,刘建芳,杨志刚. 高精度压电步进直线驱动器[J]. 吉林大学学报(工学版), 2006, 36(03): 350-0354.
[11] 李春光,胡 平,郭 威. 汽车覆盖件深拉延有限元仿真过程中的材料塑性与失效模型[J]. 吉林大学学报(工学版), 2005, 35(03): 277-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!