吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1651-1663.doi: 10.13229/j.cnki.jdxbgxb20200401

• 交通运输工程·土木工程 • 上一篇    

基于车道选择及行车轨迹的左转导向线设置方法

姚荣涵1(),祁文彦1,郑刘杰1,曲大义1,2()   

  1. 1.大连理工大学 交通运输学院,辽宁 大连 116024
    2.青岛理工大学 机械与汽车工程学院,山东 青岛 266520
  • 收稿日期:2020-06-08 出版日期:2021-09-01 发布日期:2021-09-16
  • 通讯作者: 曲大义 E-mail:cyanyrh@dlut.edu.cn;dyqu@263.net
  • 作者简介:姚荣涵(1979-),女,副教授,博士生导师.研究方向:间断交通流理论.E-mail:cyanyrh@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51578111);中央高校基本科研业务费项目(DUT20JC40)

Settings of guiding markings for left⁃turning vehicles based on lane selection and vehicle trajectory

Rong-han YAO1(),Wen-yan QI1,Liu-jie ZHENG1,Da-yi QU1,2()   

  1. 1.School of Transportation and Logistics,Dalian University of Technology,Dalian 116024,China
    2.School of Mechanical & Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China
  • Received:2020-06-08 Online:2021-09-01 Published:2021-09-16
  • Contact: Da-yi QU E-mail:cyanyrh@dlut.edu.cn;dyqu@263.net

摘要:

为利用左转导向线提升交叉口车流运行安全和效率,分析了左转车辆从进口道至出口道的车道选择行为和行驶轨迹特点。根据随机效用理论建立了左转车辆出口车道选择模型,采用圆曲线和平曲线构建了左转车辆行驶轨迹模型,并提出两种左转导向线线型和3种左转车流引导方式。搭建交通仿真模型,对6种设计方案进行比选,分析了车型比例对引导效果的影响。结果发现:车辆所处进口车道、自身车型、转弯角度、同车道前车车型均显著影响左转车辆的出口车道选择行为;平曲线和圆曲线均适用于规则和不规则交叉口;设置平曲线引导左转车辆运行不仅可规范车流运行秩序而且可提升车流运行性能;为平衡通行效率和停车次数,不宜设置过多的导向线;这些结论不受车型比例影响。在城市道路交叉口,建议使用平曲线对左转车流设置导向线。当左转车道不止一条时,建议至少设置两条左转导向线。

关键词: 城市道路, 左转导向线, 车道选择行为, 车辆行驶轨迹, 交通仿真

Abstract:

To enhance the safety and efficiency of traffic flow operations at an intersection using left-turning guiding markings, the lane selection behaviors and vehicle trajectory characteristics of left-turning vehicles from an approach to an exit are analyzed. According to the random utility theory, the exit lane selection models for left-turning vehicles are formulated. Using the circular and horizontal curves, the vehicle trajectory models for left-turning vehicles are described. Two kinds of left-turning guiding markings and three types of guiding modes for left-turning traffic flow are proposed. Traffic flow simulation models are constructed, six design scenarios are compared, and the impacts of the percentages of vehicle types on the guiding effects are analyzed. The outcomes reveal that: the approach lane, self-type, turning angle and the type of the preceding vehicle in the same lane for the target vehicle significantly impact on the exit lane selection behaviors of left-turning vehicles; the circular and horizontal curves are both suitable for regular and irregular intersections; the settings of the horizontal curves for guiding left-turning vehicles can not only standardize the order of traffic flow operations but also improve the performances of traffic flow operations; it is not suitable to install redundant guiding markings in order to balance traffic efficiency and the number of stops; these conclusions are not impacted by the percentages of vehicle types. At intersections on urban roads, it is suggested that the horizontal curves should be used to install the guiding markings for left-turning traffic flow. When the number of left-turning lanes is more than one, it is recommended that two left-turning guiding markings should be installed at least.

Key words: urban road, left-turning guiding markings, lane selection behavior, vehicle trajectory, traffic simulation

中图分类号: 

  • U491

图1

所选交叉口布局"

表1

MNL车道选择模型的解释变量"

变量名称变量符号解释
哑元变量vin{0,1},?n{1,2,3}

车辆i选择出口车道nvin=1;反之,vin=0

对于进口车道,1=内侧车道;2=外侧车道。

对于出口车道,1=内侧车道;2=中间车道;3=外侧车道。

对于车型,0=无;1=小型车;1.5=中型车;2.5=大型车。

交叉口A,Rn=1.34

交叉口B,Rn=1.83

目标车辆进口车道LAin{1,2},?n{1,2,3}
目标车辆自身车型TTin{1,1.5,2.5},?n{1,2,3}
目标车辆前车车型TFin{0,1,1.5,2.5},?n{1,2,3}
目标车辆前车所选出口车道LFEin{1,2,3},?n{1,2,3}
目标车辆相对速度VTin,?n{1,2,3}
目标车辆与前车相对速度差VFin,?n{1,2,3}
左转车辆转弯弧度Rn,?n{1,2,3}

表2

参数标定与t检验结果"

属性解释变量参数值t检验值
内侧车道哑元变量14.1679.402***
目标车辆所在进口车道-4.392-11.625***
目标车辆自身车型-1.017-2.312**
目标车辆前车车型0.6631.754*
目标车辆前车所选出口车道-1.094-1.271
目标车辆的相对速度-1.237-1.657*
目标车辆与其前车的相对速度差-0.751-3.433**
左转车辆转弯弧度-2.803-5.028***
中间车道哑元变量7.3105.956***
目标车辆所在进口车道-1.805-6.011***
目标车辆自身车型-0.842-3.223***
目标车辆前车车型0.5061.926*
目标车辆前车所选出口车道-0.126-0.192
目标车辆的相对速度-0.834-1.438
目标车辆与其前车的相对速度差-0.468-2.834***
左转车辆转弯弧度-1.364-3.107***

图2

左转车辆在出口车道上的分布"

图3

部分左转车辆驶过交叉口时的轨迹曲线"

图4

左转车辆行驶轨迹的曲率变化曲线"

表3

圆曲线型轨迹模型的参数标定结果"

交叉口进口车道起始处直线长度/m圆曲线长度/m圆曲线半径/m终止处直线长度/mMR2
黄浦路-凌水路内侧车道9.0023.9415.150.4011.9230.752
外侧车道9.1421.5213.070.1410.3010.702
五一路-西南路内侧车道4.7161.3746.9320.374.7950.971
外侧车道6.2562.5649.1219.654.3420.977

表4

平曲线型轨迹模型的参数标定结果"

交叉口进口车道起始处直线长度/m直线与圆曲线间缓和曲线长度/m圆曲线 长度/m圆曲线 半径/m圆曲线与直线间缓和曲线长度/m终止处直线长度/mMR2
黄浦路-凌水路内侧车道9.0011.164.769.018.020.404.7000.953
外侧车道9.149.665.307.476.560.144.8490.939
五一路-西南路内侧车道4.7120.498.1124.1932.7720.370.4951.000
外侧车道6.2519.967.7126.1934.8919.650.4161.000

表5

圆曲线型左转导向线参数"

交叉口导向线位置起始处直线长度/m圆曲线长度/m圆曲线半径/m终止处直线长度/m
黄浦路-凌水路内侧9.9623.3113.007.82
中间9.4030.5217.007.68
外侧8.8537.6521.007.60
五一路-西南路内侧4.7443.5733.250.00
中间4.5648.1836.750.00
外侧4.5652.7840.250.00

图5

圆曲线型左转导向线设置"

表6

平曲线型左转导向线参数"

交叉口导向线位置起始处直线长度/m直线与圆曲线间缓和曲线长度/m圆曲线长度/m圆曲线半径/m圆曲线与直线间缓和曲线长度/m终止处直线长度/m
黄浦路-凌水路内侧9.9610.015.436.259.247.82
中间9.4012.718.609.7510.737.68
外侧8.8515.2211.6713.2512.117.60
五一路-西南路内侧5.0015.9413.5518.0013.882.00
中间5.0016.4117.2221.5014.342.00
外侧5.0016.8520.9725.0014.752.00

表7

采用不同左转导向线设置方式时左转车辆在出口车道上的分布"

交叉口进口车道无引导方式内侧引导方式双左转引导方式
组合1组合2组合3组合4组合5组合6组合7
黄浦路-凌水路内侧车道8∶28∶27∶37∶31∶01∶01∶0
外侧车道4∶65∶54∶65∶54∶65∶50∶1
五一路-西南路内侧车道6∶46∶45∶55∶51∶01∶01∶0
外侧车道3∶74∶63∶74∶63∶74∶60∶1

表8

采用不同左转导向线设置方式时左转车流运行性能指标"

性能指标导向线线型进口车道无引导方式内侧引导方式双左转引导方式
组合1组合2组合3组合4组合5组合6组合7
通过车辆数/veh圆曲线A-1195.00198.00195.00198.00195.00198.00179.00
A-2189.00186.00189.00186.00189.00186.00174.00
B-1426.00414.00405.00403.00452.00452.00452.00
B-2431.00422.00407.00423.00465.00465.00465.00
平曲线A-1195.00198.00195.00198.00195.00198.00195.00
A-2189.00186.00189.00186.00189.00186.00190.00
B-1428.00420.00410.00411.00452.00452.00452.00
B-2440.00430.00419.00426.00465.00465.00465.00
车均延误/(s·veh-1圆曲线A-119.4219.5119.4219.5019.3919.6118.89
A-219.8519.6619.8519.6719.8519.6518.70
B-149.4251.6252.8453.4819.7619.7619.80
B-223.0223.3523.7722.5719.1919.1919.22
平曲线A-118.9618.9719.0018.9718.9719.0818.90
A-218.7018.5618.7118.5718.6918.5418.52
B-148.1849.6851.7251.7119.4019.4019.44
B-221.2921.0921.2420.9418.1918.1918.24
车均停车次数圆曲线A-10.700.720.700.720.700.720.69
A-20.700.700.700.700.700.700.68
B-11.151.241.241.250.520.520.52
B-20.520.520.530.510.500.500.50
平曲线A-10.690.700.700.700.690.700.69
A-20.660.660.660.660.660.660.67
B-11.251.281.321.340.510.510.51
B-20.460.470.470.460.450.450.45
平均排队长度/m圆曲线A-16.376.606.376.606.356.656.55
A-26.776.416.776.416.776.416.66
B-1211.56252.51291.07282.1920.2320.2320.27
B-2250.65270.16309.58297.4019.6019.6019.64
平曲线A-16.426.666.446.666.426.726.55
A-26.796.476.796.486.796.476.61
B-1198.44237.51258.31273.4320.2320.2320.27
B-2227.86268.96286.14282.8719.6019.6019.64
行程时间/s圆曲线A-126.6326.7226.6326.7226.5926.8026.05
A-227.0726.8727.0726.8827.0526.8525.93
B-156.3658.5659.7960.4226.6826.6826.72
B-230.0130.3330.7529.5526.1726.1626.14
平曲线A-126.1826.2026.2226.2026.1926.3026.10
A-225.9425.7925.9525.8025.9225.7625.73
B-155.1156.6158.6558.6426.3226.3226.36
B-228.2628.0528.2127.9025.1525.1525.16

表9

不同车型比例条件下左转车流运行性能指标"

车辆组成引导方式导向线线型进口 车道通过车辆数 /veh车均延误 /(s·veh-1车均停车次数平均排队 长度/m行程 时间/s
小、中、大车型比例为7∶2∶1无引导方式平曲线B-1359.6046.251.22341.0553.93
B-2374.0020.710.42343.9428.46
圆曲线B-1350.8049.801.26338.9057.50
B-2362.4022.800.48341.9230.54
内侧引导方式平曲线B-1453.6019.560.4349.1127.21
B-2465.8017.620.3645.5325.34
圆曲线B-1451.2020.310.4655.8927.97
B-2463.0019.100.4154.4626.83
双左转引导方式平曲线B-1438.6020.560.41205.6828.58
B-2446.0018.560.35212.5826.62
圆曲线B-1451.8020.550.4662.8228.22
B-2463.0019.470.4158.8627.14
小、中、大车型比例为5∶3∶2无引导方式平曲线B-1316.6045.771.24335.1354.07
B-2327.8020.760.42346.4929.05
圆曲线B-1314.6048.341.27340.7856.61
B-2329.4022.020.46345.4630.41
内侧引导方式平曲线B-1404.6020.680.41325.8128.97
B-2412.2018.750.37328.9527.09
圆曲线B-1400.8021.730.44331.3929.96
B-2404.4020.870.41318.6229.27
双左转引导方式平曲线B-1407.0021.110.43327.1229.36
B-2413.0018.820.37334.0227.11
圆曲线B-1407.0021.050.43323.2629.31
B-2412.0020.270.40332.1828.55
小、中、大车型比例为4∶3∶3无引导方式平曲线B-1298.0046.251.25345.0154.95
B-2310.6021.280.42345.4430.01
圆曲线B-1294.4047.031.23344.2055.74
B-2308.2021.870.44342.1630.68
内侧引导方式平曲线B-1374.4021.050.43334.6329.76
B-2382.0019.160.37335.7127.91
圆曲线B-1374.8021.930.44336.3030.59
B-2381.4020.550.41330.3029.32
双左转引导方式平曲线B-1368.8021.480.43334.2330.12
B-2376.2019.470.38338.2928.21
圆曲线B-1374.8021.480.44332.0530.12
B-2380.2020.480.41315.6629.19
1 Gipps P G. A model for the structure of lane-changing decisions [J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
2 Nevers B L, Rouphail N M. Field evaluation of lane selection strategies at signalized intersections[J]. Journal of Transportation Engineering, 2002, 128(3): 224-231.
3 Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112.
4 徐慧智, 程国柱, 裴玉龙. 车道变换行为对道路通行能力影响的研究[J]. 中国科技论文在线, 2010, 5(10): 749-753.
Xu Hui-zhi, Cheng Guo-zhu, Pei Yu-long. Study on effect of lane-changing behavioral characteristic to capacity[J]. Sciencepaper Online, 2010, 5(10): 749-753.
5 李志慧, 汪昆维, 宋现敏, 等. 基于车道选择特性的环形交叉口行程时间预测[J]. 吉林大学学报: 工学版, 2017, 47(5): 1411-1419.
Li Zhi-hui, Wang Kun-wei, Song Xian-min, et al. Roundabout travel time prediction based on characteristics of lane choosing[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1411-1419.
6 周红媚, 孙叶, 徐秀娟. 基于随机效用理论的城市道路车辆自由换道行为研究[J]. 交通运输研究, 2017, 3(2): 9-16.
Zhou Hong-mei, Sun Ye, Xu Xiu-juan. Behavior of discretionary lane changing on urban streets based on random utility theory[J]. Transport Research, 2017, 3(2): 9-16.
7 Sando T, Ren M. Influence of intersection geometrics on the operation of triple left-turn lanes[J]. Journal of Transportation Engineering, 2009, 135(5): 253-259.
8 Yun M, Ji J, Chen Z. Lane change behavior at weaving section of signalized intersection upstream[C]∥Proceedings of the Fourth International Conference on Transportation Engineering. Reston VA: American Society of Civil Engineers. 2013: 1229-1234.
9 曹弋, 杨忠振, 左忠义, 等. 绿灯倒计时信号对驾驶行为的影响[J]. 中国安全科学学报, 2015, 25(2): 77-82.
Cao Yi, Yang Zhong-zhen, Zuo Zhong-yi, et al. Influence of countdown signal of green light on driving behavior[J]. China Safety Science Journal, 2015, 25(2): 77-82.
10 Choudhury C F, Ben-Akiva M E. A lane selection model for urban intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2088: 167-176.
11 Peng J, Guo Y, Fu R, et al. Multi-parameter prediction of drivers' lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015, 50: 207-217.
12 杨龙海, 罗沂, 徐洪. 基于GPS定位数据的高速公路换道特征分析与行为识别[J]. 北京交通大学学报, 2017, 41(3): 39-46.
Yang Long-hai, Luo Yi, Xu Hong. Analysis and recognition of highway lane-changing behavior characteristics based on GPS location data[J]. Journal of Beijing Jiaotong University, 2017, 41(3): 39-46.
13 裴玉龙, 张银. 车道变换期望运行轨迹仿真[J]. 交通信息与安全, 2008, 26(4): 68-71.
Pei Yu-long, Zhang Yin. Lane-changing virtual desire trajectory simulation[J]. Journal of Transport Information and Safety, 2008, 26(4): 68-71.
14 曲昭伟, 白乔文, 陈永恒, 等. 无专用左转相位十字形交叉口左转导向线计算模型[J]. 吉林大学学报: 工学版, 2017, 47(2): 414-419.
Qu Zhao-wei, Bai Qiao-wen, Chen Yong-heng, et al. Model of left-turn guide line at right-angled intersection with permitted left-turning phase[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 414-419.
15 南春丽, 张生瑞, 严宝杰. 基于停车线位置的左转车辆行驶轨迹仿真模型[J]. 计算机工程与应用, 2009, 45(9): 24-27.
Chun-li Nan, Zhang Sheng-rui, Yan Bao-jie. Traveling trace simulation model for left turn vehicles based on stop line[J]. Computer Engineering and Applications, 2009, 45(9): 24-27.
16 徐慧智, 裴玉龙, 程国柱. 基于期望运行轨迹的车道变换行为安全性分析[J]. 中国安全科学学报, 2010, 20(1): 90-95, 180.
Xu Hui-zhi, Pei Yu-long, Cheng Guo-zhu. Study on the safety of lane changing based on virtual desire trajectory[J]. China Safety Science Journal, 2010, 20(1): 90-95, 180.
17 Alhajyaseen W K M, Asano M, Nakamura H, et al. Stochastic approach for modeling the effects of intersection geometry on turning vehicle paths[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 179-192.
18 . 城市道路交通标志和标线设置规范[S].
19 Wei F, Guo W, Liu X, et al. Left-turning vehicle trajectory modeling and guide line setting at the intersection[J]. Discrete Dynamics in Nature and Society, 2014(11): 1-7.
20 Qu Z W, Bai Q W, Chen Y H, et al. Optimal design of left-lane line extensions considering non-yielding maneuvers at the beginning of the permitted phase[J]. Journal of Southeast University(English Edition), 2018, 34(1): 120-126.
21 关宏志. 非集计模型—交通行为分析的工具[M]. 北京: 人民交通出版社, 2004.
22 . 道路交通标志和标线 第3部分:道路交通标线[S].
23 杨少伟. 道路勘测设计[M]. 2版. 北京: 人民交通出版社, 2009.
[1] 白乔文,曲昭伟,陈永恒,熊帅,陶楚青. 非严格优先权下无左转专用相位直行车辆轨迹模型建立[J]. 吉林大学学报(工学版), 2019, 49(3): 673-679.
[2] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[3] 宋现敏, 邓晓磊, 高铭, 曲昭伟. 基于动态反应时间的全速度差模型[J]. 吉林大学学报(工学版), 2017, 47(6): 1703-1709.
[4] 曲昭伟, 白乔文, 陈永恒, 曹宁博, 康萌, 魏福禄. 无专用左转相位十字形交叉口左转导向线计算模型[J]. 吉林大学学报(工学版), 2017, 47(2): 414-419.
[5] 李显生, 李明明, 任有, 严佳晖, 陈小夏. 城市不同道路线形下的驾驶人注视特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452.
[6] 徐洪峰, 章琨, 姚荣涵. 环形交叉口的所有进口道适时交通信号控制策略[J]. 吉林大学学报(工学版), 2016, 46(1): 76-84.
[7] 徐洪峰, 耿现彩, 何龙. 单进口轮流放行方式的四路环形交叉口交通信号控制[J]. 吉林大学学报(工学版), 2014, 44(4): 953-962.
[8] 王霄维, 王殿海, 江晟, 金盛. 基于混合优化模型的平面交叉口控制方法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 170-174.
[9] 魏丽英,应力天. 基于元胞自动机的自行车交通流仿真建模[J]. 吉林大学学报(工学版), 2011, 41(01): 51-0055.
[10] 刘昕, 王殿海, 王新颖, 宋现敏, 王德民. 基于IPv6的智能交通信息采集与处理方法[J]. 吉林大学学报(工学版), 2010, 40(05): 1225-1229.
[11] 丁建梅,王常虹,蒋贤才. 基于上游出口检测的公交优先信号控制[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 126-0130.
[12] 隗海林, 王劲松, 王云鹏, 俄文娟, 高磊. 基于城市道路工况的汽车燃油消耗模型[J]. 吉林大学学报(工学版), 2009, 39(05): 1146-1150.
[13] 姜桂艳,郭海锋,吴超腾 . 基于感应线圈数据的城市道路
交通状态判别方法
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 37-0042.
[14] 李世武,王云鹏,付建萍,韩立波,宋玉林,郭栋. 基于车辆排放的城市道路交叉口信号配时优化仿真[J]. 吉林大学学报(工学版), 2007, 37(06): 1268-1272.
[15] 王云鹏, 沙学锋, 隗海林, 李强, 李珏. 基于汽车排放评估的交通环境评价方法[J]. 吉林大学学报(工学版), 2004, (1): 118-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!