吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1454-1460.doi: 10.13229/j.cnki.jdxbgxb20200447

• 通信与控制工程 • 上一篇    

雷达脉内调制识别的改进残差神经网络算法

徐卓君1(),杨雯婷2,杨承志3,田彦涛2,4,王晓军1   

  1. 1.北京航空航天大学 航空科学与工程学院,北京 100083
    2.吉林大学 通信工程学院,长春 130022
    3.空军航空大学 航空作战勤务学院,长春 130022
    4.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2020-06-19 出版日期:2021-07-01 发布日期:2021-07-14
  • 作者简介:徐卓君(1983-),女,副教授,博士. 研究方向:信号处理,模式识别.E-mail: xuzhuojun@jlu.edu.cn

Improved residual neural network algorithm for radar intra-pulse modulation classification

Zhuo-jun XU1(),Wen-ting YANG2,Cheng-zhi YANG3,Yan-tao TIAN2,4,Xiao-jun WANG1   

  1. 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
    3.College of Air Force Logistics,Aviation University of Air Force,Changchun 130022,China
    4.Key Laboratory of Engineering Bionics,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2020-06-19 Online:2021-07-01 Published:2021-07-14

摘要:

针对人工提取的特征计算量大且存在主观、不能完全体现信号本质以及生成时频图像耗时过长的问题,提出了一种以改进残差神经网络ResNet32为框架,对雷达时域信号特征进行提取并识别的雷达信号脉内调制的算法。算法建立9种脉内信号的时域信号数据集,输入到ResNet32框架中进行训练、分类、识别。算法节省了大量生成时频图像的时间,并且实验验证算法在低信噪比(SNR)时的识别率更加优秀。在混合信噪比的实验条件中,SNR=-14 dB和SNR=-8 dB时的识别率均达到90%以上。

关键词: 模式识别与智能系统, 雷达信号, 脉内调制识别, 残差神经网络

Abstract:

The artificially extracted features are computationally intensive and subjective, fail to fully reflect the nature of the signal, and take too long to generate time-frequency images. To overcome these problems, We propose an improved residual neural network (ResNet) ResNet32 as a framework to extract and identify radar time-domain signal features. We build a time-domain signal dataset of 9 types of intra-pulse signals and input them into the ResNet32 framework for training and classification. The algorithm saves a lot of time to generate time-frequency images, and the experimental verification algorithm has a better recognition rate at low signal to noise ratio (SNR). In the experimental conditions of mixed SNR, the recognition rate of the 9 modulation types with SNR=-14 dB and SNR=-8 dB achieved more than 90%.

Key words: pattern recognition and intelligent system, radar signal, intra-pulse modulation classification, residual neural network

中图分类号: 

  • TP183

表1

相位调制函数"

码型?(t)的定义
2PSK?(t)=0π
4PSK?(t)=0,π/2,π3π/2
P1码

?m(n,k)=-π/LM-(2k-1)(k-1)M+n-1

n=1,2,,Lk=1,2,,L

P2码

?m(n,k)=-π/2L(2n-1-L)(2k-1-L)

n=1,2,,Lk=1,2,,LL为偶数)

P3码?m(k)=π/M(k-1)2k=1,2,,M
P4码?m(k)=π/M(k-1)(k-1-M)k=1,2,,M

图1

ResNet32的结构图及ResNet32残差块结构图"

表2

本文ResNet32参数设置"

参数名称本文ResNet参数设置
卷积核大小[3×1],[5×1],[3×1]
残差块结构
池化方法Max Pooling
损失函数(Loss function)Cross entropy
批量大小(Batch size)16
训练循环次数(Epoch)200
学习率0.001

表3

数据集结构"

结构内容
调制类型

LFM、2FSK、4FSK、2PSK、

4PSK、P1、P2、P3、P4

信号形式IQ两路信号
样本长度2048采样点
样本维数
信噪比范围-20~20 dB,间隔步长为2 dB
样本个数单信噪比样本个数为1024个

图2

单一信噪比的识别率折线图"

表4

单一信噪比不同算法的综合识别率"

信噪比/dB

本文识别率/%

ResNet18识别率/%

-20

62.22

41.79

-18

63.22

45.64

-16

65.33

47.13

-14

70.33

50.82

-12

74.33

53.89

-10

74.11

54.99

-8

75.22

60.69

-6

78.89

62.69

-4

84.67

64.19

-2

87.33

67.33

0

92.67

69.22

2

95.78

72.44

4

96.33

72.77

6

96.56

74.76

8

97.22

75.74

10

98.00

81.32

12

98.22

85.13

14

98.78

88.52

16

98.44

89.75

18

98.89

92.33

20

98.44

92.57

图3

单一信噪比不同算法综合识别率对比图"

图4

混合信噪比时训练损失函数及准确率"

表5

混合信噪比训练后的综合识别率"

调制类型识别率/%调制类型识别率/%
LFM97P191
2FSK97P297
4FSK98P397
2PSK97P496
4PSK99

表 6

混合信噪比不同算法的综合识别率"

信噪比/dB

本文识别率/%

ResNet18识别率/%

-20

72.02

43.56

-18

79.00

54.00

-16

87.03

67.11

-14

92.90

75.67

-12

97.59

84.44

-10

99.44

92.78

-8

100.00

97.22

-6

100.00

98.63

-4

100.00

99.67

-2

100.00

100.00

0

100.00

100.00

2

100.00

100.00

4

100.00

100.00

6

100.00

100.00

8

100.00

100.00

10

100.00

100.00

12

100.00

100.00

14

100.00

100.00

16

100.00

100.00

18

100.00

100.00

20

100.00

100.00

图5

不同信噪比的识别准确率"

1 王星, 呙鹏程, 田元荣, 等. 基于BDS-GD的低截获概率雷达信号识别[J]. 北京航空航天大学学报, 2018, 44(3):583-592.
Wang Xing, Guo Peng-cheng, Tian Yuan-rong, et al. LPI radar signal recognition based on BDS-GD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):583-592.
2 周志文, 黄高明, 高俊, 等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报:自然科学版, 2017, 44(3):77-82.
Zhou Zhi-wen, Huang Gao-ming, Gao Jun, et al. Radar emitter identification algorithm based on deep learning[J]. Journal of Xidian University, 2017, 44(3):77-82.
3 Qu Z Y, Mao X J, Deng Z A. Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6:43874-43884.
4 Qin X, Zha X, Huang J, et al. Radar waveform recognition based on deep residual network[C]∥IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019:892-896.
5 胡国兵, 宋军, 李昌利. 低截获概率雷达侦察信号分析及可信性评估[M]. 北京:国防工业出版社, 2017.
6 樊昌信. 通信原理[M]. 北京:国防工业出版社, 2009.
7 张贤达. 通信信号处理[M]. 北京:国防工业出版社, 2000.
8 刘峰, 黄宇, 王泽众, 等. 复杂信号侦察理论及应用[M]. 北京:科学出版社, 2016.
9 王彩云, 何志勇, 宫俊. 基于压缩感知的单脉冲雷达欺骗干扰机研究[J]. 北京航空航天大学学报, 2017, 43(9):1789-1797.
Wang Cai-yun, He Zhi-yong, Gong Jun. Research on deception jammer against monopulse radar based on compressed sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1789-1797.
10 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,USA, 2016:770-778.
11 Zhang Y B, Sun L L, Yan C G, et al. Adaptive residual networks for high-quality image restoration[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3150-3163.
12 李琳辉, 伦智梅, 连静,等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报:工学版, 2017,47(2):384-391.
Li Lin-hui, Zhi-mei Lun, Lian Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2):384-391.
13 Wen Z G, Liu D, Liu X Q, et al. Deep learning based smart radar vision system for object recognition[J]. Journal of Ambient Intelligence and Humanized Computing, 2019,10:829-839.
14 Li B Q, He Y Y. An improved ResNet based on the adjustable shortcut connections[J]. IEEE Access, 2018, 6:18967-18974.
15 郭坚, 漆轩. 基于残差网络的自动调制识别[J]. 计算机工程与设计, 2019, 40(9):2406-2410.
Guo Jian, Qi Xuan. Automatic modulation classification based on residual network[J]. Computer Engineering and Design, 2019, 40(9):2406-2410.
[1] 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330.
[2] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!