吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1454-1460.doi: 10.13229/j.cnki.jdxbgxb20200447
• 通信与控制工程 • 上一篇
Zhuo-jun XU1(),Wen-ting YANG2,Cheng-zhi YANG3,Yan-tao TIAN2,4,Xiao-jun WANG1
摘要:
针对人工提取的特征计算量大且存在主观、不能完全体现信号本质以及生成时频图像耗时过长的问题,提出了一种以改进残差神经网络ResNet32为框架,对雷达时域信号特征进行提取并识别的雷达信号脉内调制的算法。算法建立9种脉内信号的时域信号数据集,输入到ResNet32框架中进行训练、分类、识别。算法节省了大量生成时频图像的时间,并且实验验证算法在低信噪比(SNR)时的识别率更加优秀。在混合信噪比的实验条件中,SNR=-14 dB和SNR=-8 dB时的识别率均达到90%以上。
中图分类号:
1 | 王星, 呙鹏程, 田元荣, 等. 基于BDS-GD的低截获概率雷达信号识别[J]. 北京航空航天大学学报, 2018, 44(3):583-592. |
Wang Xing, Guo Peng-cheng, Tian Yuan-rong, et al. LPI radar signal recognition based on BDS-GD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):583-592. | |
2 | 周志文, 黄高明, 高俊, 等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报:自然科学版, 2017, 44(3):77-82. |
Zhou Zhi-wen, Huang Gao-ming, Gao Jun, et al. Radar emitter identification algorithm based on deep learning[J]. Journal of Xidian University, 2017, 44(3):77-82. | |
3 | Qu Z Y, Mao X J, Deng Z A. Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6:43874-43884. |
4 | Qin X, Zha X, Huang J, et al. Radar waveform recognition based on deep residual network[C]∥IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019:892-896. |
5 | 胡国兵, 宋军, 李昌利. 低截获概率雷达侦察信号分析及可信性评估[M]. 北京:国防工业出版社, 2017. |
6 | 樊昌信. 通信原理[M]. 北京:国防工业出版社, 2009. |
7 | 张贤达. 通信信号处理[M]. 北京:国防工业出版社, 2000. |
8 | 刘峰, 黄宇, 王泽众, 等. 复杂信号侦察理论及应用[M]. 北京:科学出版社, 2016. |
9 | 王彩云, 何志勇, 宫俊. 基于压缩感知的单脉冲雷达欺骗干扰机研究[J]. 北京航空航天大学学报, 2017, 43(9):1789-1797. |
Wang Cai-yun, He Zhi-yong, Gong Jun. Research on deception jammer against monopulse radar based on compressed sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1789-1797. | |
10 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,USA, 2016:770-778. |
11 | Zhang Y B, Sun L L, Yan C G, et al. Adaptive residual networks for high-quality image restoration[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3150-3163. |
12 | 李琳辉, 伦智梅, 连静,等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报:工学版, 2017,47(2):384-391. |
Li Lin-hui, Zhi-mei Lun, Lian Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2):384-391. | |
13 | Wen Z G, Liu D, Liu X Q, et al. Deep learning based smart radar vision system for object recognition[J]. Journal of Ambient Intelligence and Humanized Computing, 2019,10:829-839. |
14 | Li B Q, He Y Y. An improved ResNet based on the adjustable shortcut connections[J]. IEEE Access, 2018, 6:18967-18974. |
15 | 郭坚, 漆轩. 基于残差网络的自动调制识别[J]. 计算机工程与设计, 2019, 40(9):2406-2410. |
Guo Jian, Qi Xuan. Automatic modulation classification based on residual network[J]. Computer Engineering and Design, 2019, 40(9):2406-2410. |
[1] | 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330. |
[2] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
|