吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2532-2541.doi: 10.13229/j.cnki.jdxbgxb20210322

• 车辆工程·机械工程 • 上一篇    

应用数据驱动算法提高涡粘模型分离流动模拟精度

顾忠华(),颜培刚,刘泮宏,王祥锋()   

  1. 哈尔滨工业大学 能源科学与工程学院,哈尔滨 150001
  • 收稿日期:2021-04-13 出版日期:2022-11-01 发布日期:2022-11-16
  • 通讯作者: 王祥锋 E-mail:zhonghuagu_hit@163.com;wxf6046516@hit.edu.cn
  • 作者简介:顾忠华(1971-),男,博士研究生. 研究方向:叶轮机械设计及流动控制. E-mail:zhonghuagu_hit@163.com
  • 基金资助:
    国家自然科学基金项目(51776047)

Applying data driven algorithm to promote prediction accuracy of separation boundary simulation with eddy viscosity model

Zhong-hua GU(),Pei-gang YAN,Pan-hong LIU,Xiang-feng WANG()   

  1. School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China
  • Received:2021-04-13 Online:2022-11-01 Published:2022-11-16
  • Contact: Xiang-feng WANG E-mail:zhonghuagu_hit@163.com;wxf6046516@hit.edu.cn

摘要:

针对雷诺平均N-S方程中涡粘模型对分离流动预测精度这一关键问题,开发了基于人工智能数据驱动机器学习算法,克服了传统涡粘模型对分离边界层流动预测过于依赖经验参数等问题,并提高了数值模拟精度。根据影响湍流演化的物理机理,通过将涡粘模型计算分离流动的计算结果作为基准,选取多个由平均流状态表征的变量作为输入变量,以高阶雷诺应力模型计算结果构建高保真度数据库,并将雷诺应力进行分解的6个变量作为输出变量,建立基于随机森林回归的由基准流场到高保真度数据的映射关系和预测模型。结果表明:预测模型对分离流动的预测精度都有明显提高。

关键词: 动力机械及工程, 数据驱动算法, 涡粘模型, 雷诺应力, 分离流动

Abstract:

Aiming at the key problem of prediction accuracy of eddy viscosity model in Reynolds averaged N-S equations for separation flow, a data-driven machine learning algorithm based on artificial intelligence is developed to overcome the problem that the traditional eddy viscosity model relying too much on empirical parameters for the separation boundary layer flow prediction, and the accuracy of numerical simulation is improved. According to the physical mechanism affecting turbulence evolution, the eddy viscosity model calculation results of separation flow are taken as the baseline, several variables characterized by the average flow state are selected as the input variables, the high fidelity database is constructed based on the calculation results of high-order Reynolds stress model, and the six variables decomposed from Reynolds stress are taken as output variables, the mapping relationship and prediction model from baseline flow field data to high fidelity data constructed by random forest regression algorithm are established. The results show that, the prediction accuracy of the model for the separation flow is significantly improved.

Key words: power machinery and engineering, data driven algorithm, eddy viscosity model, Reynolds stress, separation flow

中图分类号: 

  • V231.3

表1

输入变量"

输入特征原始变量α正则化系数β
q112Ω2-S2S2
q2k12UiUi
q3minkd50ν,2无需正则化
q4Uk?P?xk?P?xj?P?xjUiUi
q5kε1S
q6?P?xi?P?xi12ρ?Uk2?xk
q7UiUj?Ui?xjUlUlUi?Ui?xjUk?Uk?xj
q8u'iu'jˉk
q9νt100ν

图1

机器学习流程图"

图2

几何模型"

图3

计算网格"

表2

训练方案"

方案训练集测试集目标函数
1k-?模型,Re=5600k-?模型,Re=4200DNS
2SST模型,Re=5600SST模型,Re=4200
3k-?模型,Re=7000k-?模型,Re=10 595

图4

不同模型对回流区预测的结果对比(Re=4200)"

图5

湍流各向异性预测对比(x/h=1,Re=4200)"

图6

湍动能k对比(Re=4200)"

图7

雷诺应力τxx,τxy对比(Re=4200)"

图8

Lumly各向异性应力三角形"

图9

速度层对比(Re=4200)"

图10

流线图(Re=10 595)"

图11

湍动能k对比(Re=10 595)"

图12

扰流几何模型和流场结构图"

表3

样本算例"

方案训练集测试集目标函数
(周期山模型)(肋通道模型)
1

RANS k-ε模型,

Re=5600

RANS k-ε模型,

Re=5600

LES
2

RANS k-ε模型,

Re=5600

RANS k-ε模型,

Re=5600

图13

雷诺应力各向异性对比(x/h=3,Re=5600)"

图14

雷诺正应力项τxx对比(Re=5600)"

图15

雷诺应力各向异性对比(x/h=3,Re=4200)"

图16

雷诺正应力项τxx对比(Re=4200)"

1 Marusic I, Candler G, Interrante V, et al. Real time feature extraction for the analysis of turbulent flows[J]. Data Mining for Scientific and Engineering Applications, 2001(2): 223-238.
2 Spencer A, Rivlin R. Isotropic integrity bases for vectors and second-order tensors[J]. Archive for Rational Mechanics & Analysis, 1964, 18(1): 51-82.
3 Tracey B D, Duraisamy K, Alonso J J. A machine learning strategy to assist turbulence model development[C]∥53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, 2015: 1287.
4 Zhang Z J, Duraisamy K. Machine learning methods for data-driven turbulence modeling[C]∥22nd AIAA Computational Fluid Dynamics Conference, Dallas, USA, 2015: 2460.
5 Duraisamy K, Zhang Z J, Singh A P. New approaches in turbulence and transition modeling using data-driven techniques[C]∥53rd AIAA Aerospace Sciences Meeting, Kissimmee, USA, 2015: 1284.
6 Singh A P, Duraisamy K, Zhang Z J. Augmentation of turbulence models using field inversion and machine learning[C]∥55th AIAA Aerospace Sciences Meeting, Grapevine, USA, 2017: 0993.
7 Wang J X, Wu J L, Xiao H. Physics informed machine learning approach for reconstructing reynolds stress modeling discrepancies based on DNS data[J]. Phys Rev Fluids, 2017(3): 1-22.
8 Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
9 Ling J, Templeton J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier-Stokes uncertainty[J]. Physics of Fluids, 2015, 27(8): 085103.
10 Xiao H, Wu J, Wang J, et al. Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes equations: a data-driven, physics-informed bayesian approach[J]. Journal of Computational Physics, 2016, 324: 115-136.
11 Xiao H, Wu J, Wang J, et al. Physics-informed machine learning for predictive turbulence modeling: progress and perspectives[J]. 55th AIAA Aerospace Sciences Meeting, Grapevine, USA, 2017: 1712.
12 Gamaharam M, Hattoriy Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5): 054604.
13 Maulik R, San O, Rasheed A, et al. Sub-grid modelling for two-dimensional turbulence using neural networks[J]. Journal of Fluid Mechanics, 2019, 858: 122-144.
14 Wang Z, Luo K, Li D, et al. Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30(12): 125101.
15 Wu J, Xiao H, Paterson E. Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework[J]. Physical Review Fluids, 2018, 3: 074602.
16 Thompson Roney L, Sampaio Luiz Eduardo B, de Braganca Alves Felipe A V, et al. A methodology to evaluate statistical errors in DNS data of plane channel flows[J]. Computation of Fluids, 2016, 130: 1-7.
17 Banerjee S, Krahl R, Durst F, et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches[J]. Journal of Turbulence, 2007, 8(32): 1-27.
18 Kumar V, Frohnapfel B, Jovaanovic J. Anisotropy invariant reynolds stress model of turbulence and its application to attached and separated wall-bounded flows[J]. Flow Turbulence Combust, 2009, 83: 81-103.
19 颜培刚, 杜明杰. 燃气涡轮带肋冷却通道流动与换热的大涡模拟[J]. 哈尔滨工业大学学报, 2018, 50(1): 75-81.
Yan Pei-gang, Du Ming-jie. Numerical research of flow and heat transfer in a ribbed channel based on les approach[J]. Journal of Harbin Institute of Technology, 2018, 50(1): 75-81.
[1] 汤东,韩宇彬,华伦,潘金冲,刘胜. 润滑油灰分对直喷汽油机颗粒捕集器性能影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2501-2507.
[2] 王乔,孙万臣,郭亮,程鹏,范鲁艳,李国良. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1920-1928.
[3] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
[4] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[5] 刘忠长, 孙士杰, 田径, 徐瑞辰, 汪泊舟. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报(工学版), 2014, 44(6): 1639-1646.
[6] 包堂堂, 胡宗杰, 胡俊超, 阮逸平, 邓俊, 吴志军. 基于超声雾化的柴油/汽油混合燃料液滴群燃烧特性[J]. 吉林大学学报(工学版), 2013, 43(04): 903-908.
[7] 于秀敏,谭兴闻,马君,李国良,董伟,齐万强,崔峰云. 缸内直喷汽油机起动控制[J]. 吉林大学学报(工学版), 2011, 41(6): 1554-1558.
[8] 刘成材,高青,马纯强,金英爱,李玥. 发动机可变组分进气系统的膜气体分离特性[J]. 吉林大学学报(工学版), 2010, 40(03): 625-0629.
[9] 刘发发,谷艳华,彭亚平,李华,郭英男 . 乙醇均质压燃燃烧的化学反应动力学模拟[J]. 吉林大学学报(工学版), 2009, 39(01): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!