吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 159-169.doi: 10.13229/j.cnki.jdxbgxb20210557
• 交通运输工程·土木工程 • 上一篇
Shun LIU1,2(),Xiao-wei TANG1(),Yi-xiao LUAN1
摘要:
针对Rayleigh阻尼系数的影响因素,分析了目标阻尼比和敏感频率范围选择对地下结构地震下的孔隙水压力、上浮量和结构内力的影响。结果表明,目标阻尼比影响地铁车站的变形形态,且其值越大,土体的超孔隙水压力发展越慢,地铁结构的上浮量和内力增量越小;上限敏感频率的影响存在着阈值,超过阈值,超孔隙水压力、地铁结构上浮量和内力增量的变化基本不受影响。综合分析表明,可液化土中地铁结构动力分析应结合场地和输入震动的特性,充分考虑Rayleigh阻尼的影响因素,合理地引入粘性阻尼。
中图分类号:
1 | Liu H, Song E. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations[J]. Computers and Geotechnics, 2005, 32(4): 223-244. |
2 | Zhuang H, Hu Z, Wang X, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668. |
3 | 胡记磊,刘华北. 改进碎石排水措施的地铁结构液化上浮响应数值试验[J]. 隧道建设, 2017, 37(): 82-86. |
Hu Ji-lei, Liu Hua-bei. Numerical experiment of liquefaction induced uplift response of metro station by improved gravelly soil method[J]. Tunnel Construction, 2017, 37(Sup.2):82-86. | |
4 | Park D, Hashash Y M A. Soil damping formulation in nonlinear time domain site response analysis[J]. Journal of Earthquake Engineering, 2004, 8(2): 249-274. |
5 | Kwok A O L, Stewart J P, Hashash Y M A, et al. Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(11): 1385-1398. |
6 | Hardyniec A, Charney F. An investigation into the effects of damping and nonlinear geometry models in earthquake engineering analysis[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(15): 2695-2715. |
7 | 邹德高,徐斌,孔宪京. 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. 岩土力学, 2011, 32(3): 797-803. |
Zou De-gao, Xu-Bin, Kong Xian-jing. Study of influence of different methods for calculating rayleigh damping coefficient on high earth rock dam seismic response[J]. Rock and Soil Mechanics,2011,32(3):797-803. | |
8 | 王豪,高广运,杨成斌. 瑞利阻尼对砂土场地非线性地震响应的影响分析[J]. 地震工程学报, 2016, 38(6): 909-915. |
Wang Hao, Gao Guang-yun, Yang Cheng-bin. Influence of rayleigh damping on nonlinear seismic response of sand sites[J]. China Earthquake Engineering Journal, 206, 38(6): 909-915. | |
9 | Tang X W, Shao Q. Numerical simulation on seismic liquefaction by adaptive mesh refinement due to two recovered fields in error estimation[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 109-121. |
10 | Tang X W, Zhang X W, Uzuoka R. Novel adaptive time stepping method and its application to soil seismic liquefaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 100-113. |
11 | Uzuoka R. Analytical study on the mechanical behavior and prediction of soil liquefaction and flow[D]. Gifu: Gifu University, 2000. |
12 | Oka F, Yashima A, Shibata T, et al. FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J]. Applied Scientific Research, 1994, 52(3): 209-245. |
13 | Idriss I M, Lysmer J R H. QUAD4: a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures[R]. Berkeley: University of California, 1973. |
14 | Yoshida N, Kobayashi S, Suetomi I, et al. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil dynamics and Earthquake Engineering, 2002, 22(3): 205-222. |
15 | Sun Q, Dias D. Significance of Rayleigh damping in nonlinear numerical seismic analysis of tunnels[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 489-494. |
16 | Oka F, Yashima A, Tateishi A, et al. A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus[J]. Géotechnique, 1999, 49(5): 661-680. |
17 | Matsuo O, Shimazu T, Uzuoka R, et al. Numerical analysis of seismic behavior of embankments founded on liquefiable soils[J]. Soils and Foundations, 2000, 40(2): 21-39. |
[1] | 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098. |
[2] | 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855. |
[3] | 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882. |
[4] | 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637. |
[5] | 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640. |
[6] | 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164. |
[7] | 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724. |
|