吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2685-2697.doi: 10.13229/j.cnki.jdxbgxb20210839

• 计算机科学与技术 • 上一篇    

基于再生码的区块链分布式编码方案

肖鹤玲1(),郭网媚2,王静3   

  1. 1.长安大学 电子与控制工程学院,西安 710064
    2.西安电子科技大学 ISN国家重点实验室,西安 710071
    3.长安大学 信息工程学院,西安 710064
  • 收稿日期:2021-08-28 出版日期:2022-11-01 发布日期:2022-11-16
  • 作者简介:肖鹤玲(1983-),女,讲师,博士.研究方向:分布式存储,区块链系统,纠删码. E-mail: xhlste@163.com
  • 基金资助:
    国家自然科学基金项目(62001059);陕西省自然科学基础研究计划项目(2021JQ-196)

Distributed coding scheme for blockchain system based on regeneration codes

He-ling XIAO1(),Wang-mei GUO2,Jing WANG3   

  1. 1.School of Electronic & Control Engineering,Chang'an University,Xi'an 710064,China
    2.State Key Laboratory of Integrated Service Networks,Xidian University,Xi'an 710071,China
    3.School of Information Engineering,Chang'an University,Xi'an 710064,China
  • Received:2021-08-28 Online:2022-11-01 Published:2022-11-16

摘要:

为降低区块链系统中节点的内存需求和网络负载,提出了基于(n,k,d)精确再生MSR码的分布式编码方案。该编码方案与比特币型区块链具有相同的区块挖掘、广播和验证协议。不同之处在于,本文方案在区块链中对多个区块数据进行编码,系统中的全节点不必再存储链中所有的区块数据。特别地,对一个包含有k个区块的分组,仅需存储1个区块大小的编码数据。当需要读取未存储于本地的区块数据时,从d个帮助节点处下载少量数据就可以精确恢复出所需区块。此编码方案在保持区块链数据完整性和可用性的同时,使全节点的存储消耗和修复开销显著降低,增强了系统的可扩展性。当更多节点加入链中时,通过充分的实验,证明了系统的存储能力扩大,网络带宽成本有效地降低。

关键词: 区块链, 分布式存储, 再生码, 存储可扩展性

Abstract:

A novel way of distributed coding schemes to reduce blockchain nodes' memory requirements and network load using (n,k,d) exact-regeneration MSR (ER-MSR) codes is presented. Our scheme has the same protocol for mining, broadcasting, and verification of blocks as Bitcoin-type blockchains. As for the difference, the full nodes encode data across multiple blocks and do not have to store all blocks. Specially, a group of k blocks only need to store one block. To exactly read a block data that is not stored locally, it can be realized by connecting to d helper nodes and downloading a small amount of data. While maintaining the integrity and availability of block, this scheme leads to a significant reduction in storage and recovery communication costs, and the scalability of the system is enhanced. It is proved that this system has enlarged overall storage capability and reduced the cost of network bandwidth when more nodes attend the blockchain.

Key words: blockchain, distributed storage, regeneration codes, storage scalability

中图分类号: 

  • TP302

图1

区块结构示意图"

图2

区块分组示意图"

表1

文中使用的重要数学符号"

符号说 明符号说 明
B(i)i个区块α数据符号长度
k区块分组长度A(m)区块数据矩阵
aij数据元素v?i编码码字
T区块大小V(m)区块编码矩阵
a?ij数据符号d帮助节点个数

图3

失效节点2的恢复示意图"

图4

不同区块链系统的译码复杂度"

图5

不同区块链系统区块的平均存储开销"

图6

不同区块链系统的整体存储能力"

图7

不同区块链系统的修复开销"

1 Satoshi N. Bitcoin: a peer-to-peer electronic cash system[J/OL]. [2020-05-22].
2 Wood G. Ethereum: a secure decentralised generalised transaction ledger[J/OL]. [2020-11-12].
3 Schwartz D, Youngs N, Britto A. The ripple protocol consensus algorithm[J/OL]. [2020-08-16].
4 Kiavias A, Russell A, David B, et al. Ouroboros: a provably secure proof-of-stake blockchain protocol[C]∥Advances in Cryptology-CRYPTO 2017, 37th Annual International Cryptology Conference, Santa Barbara, USA,2017: 357-388.
5 Azaria A, Ekblaw A, Vieira T, et al. MedRec: using blockchain for medical data access and permission management[C]∥2nd International Conference on Open and Big Data, Vienna, Austria, 2016: 25-30.
6 Kosba A, Miller A, Shi E, et al. Hawk: the blockchain model of cryptography and privacy-preserving smart contracts[C]∥IEEE Symposium on Security and Privacy, San Jose, USA, 2016: 839-858.
7 Xu C, Wang K, Guo M. Intelligent resource management in blockchain-based cloud datacenters[J]. IEEE Cloud Computing, 2018, 4(6): 50-59.
8 Underwood S. Blockchain beyond Bitcoin[J]. Communications of the ACM,2016,59(11):15-17.
9 曾诗钦, 霍如, 黄韬,等. 区块链技术研究综述:原理,进展与应用[J]. 通信学报,2020,41(1):134-151.
Zeng Shi-qin, Huo Ru, Huang Tao, et al. Survey of Blockchain: principle, progress and aplication[J]. Journal on Communications, 2020, 41(1): 134-151.
10 Churyumov A. ByteBall: a decentralized system for storage and transfer of value[J/OL]. [2021-03-04].
11 Raman R K, Varshney L R. Dynamic distributed storage for blockchains[C]∥IEEE International Symposium on Information Theory, Vail, USA, 2018: 2619-2623.
12 Kim Y, Raman R K, Kim Y S, et al. Efficient local secret sharing for distributed blockchain systems[J]. IEEE Communications Letters,2019,23(2):282-285.
13 Dai M, Zhang S, Wang H, et al. A low storage room requirement framework for distributed ledger in blockchain[J]. IEEE Access, 2018, 6: 22970-22975.
14 Perard D, Lacan J, Bachy Y, et al. Erasure code-based low storage blockchain node[C]∥IEEE International Conference on Internet of Things (iThings) . Halifax, Canada, 2018: 1622-1627.
15 Qi X D, Zhang Z, Jin C Q, et al. A reliable storage partitioning for permissioned blockchain[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(1): 14-27.
16 Wu H H, Ashikhmin A, Wang X D, et al. Distributed error correction coding scheme for low storage blockchain systems[J]. IEEE Internet of Things Journal, 2020, 7(8): 7054-7071.
17 Rules Protocol, Accessed: June 23, 2020[EB/OL]. [2021-04-11].
18 Block Size Limit Controversy, Accessed: April 8, 2019[EB/OL]. [2020-04-15].
19 Etherchain,Accessed: Jun 10, 2021[EB/OL]. [2022-04-06].
20 王意洁,许方亮,裴晓强.分布式存储中的纠删码容错技术研究[J].计算机学报,2017,40(1): 236-255.
Wang Yi-jie, Xu Fang-liang, Pei Xiao-qiang. Research on erasure code-based fault-tolerant technology for distributed storage[J]. Chinese Journal of Computers, 2017, 40(1): 236-255.
21 Rashmi K V, Shah N B, Ramchandran K, et al. Information-theoretically secure erasure codes for distributed storage[J]. IEEE Transactions on Information Theory, 2018, 64(3): 1621-1646.
22 Wu Y N, Dimakis A G, Ramchandran K. Deterministic regenerating codes for distributed storage[C]∥Proceeding of the 45th Annual Allerton Conference on Control, Computing and Communication, Urbana-Champaign, Illinois, USA, 2007: 1354-1362.
23 Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J]. IEEE Transactions on Information Theory, 2010, 56(9):4539-4551.
24 Dimakis A G, Ramchandran K, Wu Y N, et al. A survey on network codes for distributed storage[J]. Proceedings of the IEEE, 2011, 99(3): 476-489.
25 Ahlswede L, Cai N, Li R S-Y, et al. Network information flow[J]. IEEE Transaction Information Theory, 2000, 46(4): 1204-1216.
26 Li R S-Y, Yeung R W, Cai N. Linear network coding[J]. IEEE Transaction Information Theory, 2003, 49(2): 371-381.
27 Shah N B, Rashm K V, Kumar P V, et al. Distributed storage codes with repair-by-transfer and nonachievability of interior points on the storage-bandwidth tradeoff[J]. IEEE Transactions on Information Theory, 2012, 58(3): 1837-1852.
28 Rashmi K V, Shah N B, Kumar P V. Optimal exact-regenerating codes for distributed storage at the msr and mbr points via a product-matrix construction[J]. IEEE Transactions on Information Theory, 2011, 57(8): 5227-5239.
29 张司娜, 唐小虎, 李杰. 一类新的 ( k + 2 , k ) Hadamard MSR码[J]. 西南交通大学学报, 2016, 51(1):188-192, 200.
Zhang Si-na, Tang Xiao-hu, Li Jie. A new ( k + 2 , k ) Hadamard minimum storage regenerating code[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 188-192, 200.
[1] 姜斌祥,许鸿奎,何丹. 基于区块链的毒品检验大数据效率改进[J]. 吉林大学学报(工学版), 2022, 52(7): 1666-1678.
[2] 姜斌祥,姜彤彤,王永雷. 基于文化遗传算法的毒品检验区块链共识算法优化[J]. 吉林大学学报(工学版), 2022, 52(3): 684-692.
[3] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[4] 沈淑涛,尼玛扎西. 基于区块链技术的双混沌可识篡改图像加密方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1055-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!