吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (1): 37-45.doi: 10.13229/j.cnki.jdxbgxb20210928

• 车辆工程·机械工程 • 上一篇    下一篇

柴油喷射时刻及汽油比例对均质混合气引燃模式排放性能的影响

苏岩1(),王博1,刘宇1(),解方喜1,胡云峰2,段加全2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.中国一汽集团公司 汽车振动噪声与安全控制综合技术国家重点实验室,长春 130011
  • 收稿日期:2021-10-08 出版日期:2022-01-01 发布日期:2022-01-14
  • 通讯作者: 刘宇 E-mail:suyan@jlu.edu.cn;liuyu1981@jlu.edu.cn
  • 作者简介:苏岩(1974-),男,教授,博士. 研究方向:内燃机工作过程优化与控制.E-mail:suyan@jlu.edu.cn
  • 基金资助:
    汽车振动噪声与安全控制综合技术国家重点实验室开放基金项目(FAWSKL2020KFJJC1);吉林省科技发展计划项目(20200403150SF);吉林省教育厅科学技术研究项目(JJKH20211086KJ)

Effect of diesel injection timing and gasoline ratio on the emissions of homogeneous charge induced ignition

Yan SU1(),Bo WANG1,Yu LIU1(),Fang-xi XIE1,Yun-feng HU2,Jia-quan DUAN2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Comprehensive Technology on Automobile Vibration and Noise & Safety Control,China FAW Group Corporation,Changchun 130011,China
  • Received:2021-10-08 Online:2022-01-01 Published:2022-01-14
  • Contact: Yu LIU E-mail:suyan@jlu.edu.cn;liuyu1981@jlu.edu.cn

摘要:

在均质混合气引燃模式下,研究了不同汽油比例和柴油喷射时刻对燃烧、常规气体和微粒的影响。发动机转速设定为1600 r/min,设定循环喷油量总热值为原机50%负荷工况喷油总热值,设定汽油比例为65%、70%、75%,柴油主喷时刻为-10 °CA、-5 °CA以及0 °CA。结果表明:在本次试验的最优策略下扭矩提升5%,NOx比排放降低60%,达到0.31 g/(kW·h),核态微粒数量浓度降低80%,积聚态微粒数量浓度降低97%。本文研究结果展现了均质混合气引燃模式在降低微粒和NOx方面的巨大潜力。

关键词: 均质引燃, 喷射参数, 微粒排放

Abstract:

Based on the homogeneous charge induced ignition combustion mode, this paper studies the effects of gasoline ratios and diesel injection timing on combustion conventional gases and particulates emission. The engine speed is set to 1600 r/min, the total calorific value of the circulating fuel injection quantity is set to the total calorific value of the original engine under 50% working condition and the gasoline ratio is set to 65%, 70%, 75%. The injection time is fixed at -340°CA; gasoline injection pressure is fixed at 0.35 MPa, diesel main injection time is -10° CA, -5° CA and 0° CA, diesel pre-injection amount is 30% of total diesel injection amount, The results show that under the optimal strategy in this test, the torque is increased by 5%, the specific NOx emission is reduced by 60% to 0.31 g/(kW·h), the concentration of nuclear particles is reduced by 80%, and the concentration of accumulated particles is reduced by 97%, The research results of this paper show the great potential of homogeneous mixture pilot mode in reducing particulates and NOx.

Key words: homogeneous charge induced ignition, injection parameters, particle emissions

中图分类号: 

  • TK421.5

表 1

试验用发动机参数"

发动机参数技术规格
发动机形式压燃、直列、四缸、四冲程
排量2.771 L
缸径×行程95.4 mm×104.9 mm
压缩比17.2∶1
喷孔数6个
最高供油压力170 MPa
每缸气门数4(进、排气各2个)
最大扭矩/转速240 N?m/ 1400~2600 r?min-1
额定功率/转速80 kW/3400 r?min-1
怠速转速800±30 r?min-1
排放标准国V

表 2

汽油和柴油理化特性"

特 性汽 油柴 油
液体密度/(kg?m-3750860
20℃动力黏度/(Pa?s)3.440
自燃温度/K509482
辛烷值(RON)9520
十六烷值1252
化学计量空燃比14.814.3
低热值/(kJ?kg-143 96042 500
沸点/K455482

图 1

发动机测试平台示意图"

表 3

测试设备参数"

项目仪器型 号生产厂家
电涡流测功机CW160凯迈机电
空气流量计SENSYCON三盟科技
汽油油耗仪DF?2420同圆测试
柴油油耗仪TOCEIL?CMFG025同圆测试
缸压传感器Kistler5018Kistler
角标仪365C01AVL
排放分析仪MEXA?7100DEGRHORIBA
冷却恒温装置SLW4001/0000申力测控
Lambda仪ES631.1ETAS
燃烧分析仪6260AVL

图 2

汽油比例分别为65%、70%和75%时缸压和放热率 曲线"

图3

喷射时刻对温度变化的影响"

图 4

柴油主喷时刻对滞燃期和燃烧持续期的影响"

图5

柴油主喷时刻对循环变动率和压力升高率的影响"

图6

柴油主喷时刻对指示热效率的影响"

图7

柴油喷射时刻对排放特性的影响"

图 8

微粒数量浓度分布"

图 9

微粒质量浓度分布"

图10

喷射时刻对核态与积聚态微粒的数量占比的影响"

图11

喷射时刻对扭矩和燃油消耗率的影响"

1 Avinash Kumar Agarwal, Akhilendra Pratap Singh, Rakesh Kumar Maurya. Evolution challenges and path forward for low temperature combustion engines[J]. Progress in Energy and Combustion Science, 2017, 61:1-56.
2 王建昕,蒋恒飞,王燕军,等. 汽油均质混合气柴油引燃(HCII)燃烧特性的研究[J]. 内燃机学报, 2004(5): 391-396.
Wang Jian-xin, Jiang Heng-fei, Wang Yan-jun, et al. Study on the combustion characteristics of homogeneous charge induced ignition(HCCI) of gasoline engine[J]. Transactions of CSICE, 2004(5):391-396.
3 Reitz Rolf D,Ganesh Duraisamy. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines[J]. Progress in Energy and Combustion Science, 2015, 46: 12-71.
4 任烁今. 重型发动机均质混合气引燃燃烧的试验研究和数值模拟[D]. 北京:清华大学汽车工程系, 2018.
Ren Shuo-jin. Experimental studies and numerical simulations of homogenous mixture combustion of heavy-duty engines[D]. Beijing: Department of Automotive Engineering, Tsinghua University, 2018.
5 张海燕,李思远,王志坚,等. 多缸柴油机汽油均质混合气引燃的排放特性[J]. 农业工程学报, 2017, 33(19):108⁃114.
Zhang Hai-yan, Li Si-yuan, Wang Zhi-jian, et al. Emission performance of gasoline homogeneous charge induced ignition in multi-cylinder diesel engine[J]. Transactions of the CSAE, 2017, 33(19):108-114.
6 Li Si yuan,Sun Ke,Yin Wei, et al. Experimental investigation on the characteristics and performance of homogeneous charge induced ignition(HCII) on a multi-cylinder heavy-duty engine[J]. Fuel, 2020, 280:259-271.
7 任烁今, 郭勇, 颜燕, 等. 压缩比对双燃料燃烧全工况特性影响试验研究[J]. 工程热物理学报, 2021, 42(6):1591-1599.
Ren Shuo-jin, Guo Yong, Yan Yan, et al. Experimental investigation of the effects of compression ratio on the dual-fuel combustion over the full operating map[J]. Journal of Engineering Thermophysics, 2021, 42(6):1591-1599.
8 郑尊清,查海恩,刘海峰,等. 两次喷射参数及EGR对汽油压燃(GCI)燃烧及排放的影响[J]. 燃烧科学与技术,2018(4): 307-314.
Zheng Zun-qing, Zha Hai-en, Liu Hai-feng, et al. Effects of split injection parameters and EGR on combustion and emissions of GCI[J]. Journal of Combustion Science and Technology, 2018(4): 307-314.
9 Huang Yu-han, Surawski Nic C, Zhuang Yuan, et al. Dual injection: an effective and efficient technology to use renewable fuels in spark ignition engines[J]. Renewable and Sustainable Energy Reviews, 2021, 143:No.110921.
10 Wang Hu,Yao Ming-fa,Yue Zong-yu,et al. A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions[J]. Combustion and Flame, 2015, 162(6):2390-2404.
11 米姗, 王浒, 李彩云, 等.直喷汽油对反应活性控制压燃负荷拓展影响的数值模拟研究[J]. 内燃机工程, 2019, 40(2):97-103.
Mi Shan, Wang Hu, Li Cai-yun, et al. Numerical simulation study of the effect of gasoline direct injection on the load expansion of reactivity controlled compression ignition combustion mode[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(2):97-103.
12 张淼淼. 缸内直喷汽油机微粒排放及光学诊断试验研究[D]. 长春:吉林大学汽车工程学院, 2019.
Zhang Miao-miao. Experimental investigation of particulate matter and optical diagnostic in gasoline direct injection engine[D]. Changchun: College of Automotive Engineering, Jilin University, 2019.
13 刘海峰, 文铭升, 杨智, 等. 发动机缸内自燃着火与火焰传播的调控[J]. 内燃机学报, 2020, 38 (3):200-209.
Liu Hai-feng, Wen Ming-sheng, Yang Zhi, et al. Optical diagnostics on combustion mode between auto-ignition and flame propagation in engines[J]. Transactions of CSICE, 2020, 38(3):200-209.
14 Westbrook Charles K. Chemical kinetics of hydrocarbon ignition in practical combustion systems[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1563-1577.
15 Ju Yi-guang, Sun Wen-ting. Plasma assisted combustion: dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
16 Tree Dale R, Svensson Kenth I. Soot processes in compression ignition engines[J]. Progress in Energy and Combustion Science,2006,33(3): 272-309.
17 Benajes Jesús, Molina Santiago, García Antonio, et al. An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels[J]. Applied Thermal Engineering, 2014, 63(1): 66-76.
18 Choi S, Myung C L, Park S. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: part 2[J]. International Journal of Automotive Technology, 2014, 15(2): 219-227.
19 Saxena Mohit Raj, Maurya Rakesh Kumar. Influence of fuel injection pressure and injection timing on nanoparticle emission in light-duty gasoline/diesel RCCI engine[J]. Particulate Science and Technology, 2021, 39(5): 641-650.
[1] 王乔,孙万臣,郭亮,程鹏,范鲁艳,李国良. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1920-1928.
[2] 孙万臣, 孙士龙, 王晓丹, 李国良, 赖春杰. 燃料挥发性对高压共轨柴油机微粒排放粒度分布的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 619-625.
[3] 王丹, 刘忠长, 王忠恕, 吴楠, 刘江唯. 铁基燃油添加剂对柴油机微粒排放的影响[J]. , 2012, 42(05): 1173-1178.
[4] 田径, 韩永强, 刘忠长, 李骏, 李康. 柴油机燃油催化微粒后处理器性能与再生[J]. 吉林大学学报(工学版), 2011, 41(01): 18-0023.
[5] 许允,刘忠长,姜伟,高润良 . 氧化催化转化器对降低柴油机微粒排放的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 65-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!