吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 1076-1081.doi: 10.7964/jdxbgxb201304037

• 论文 • 上一篇    下一篇

序列矩阵表示的卷积网络编码的译码方法

郭网媚, 李娜, 王骁   

  1. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,西安 710071
  • 收稿日期:2012-03-27 出版日期:2013-07-01 发布日期:2013-07-01
  • 作者简介:郭网媚(1984-),女,博士研究生.研究方向:卷积网络编码.E-mail:wangmeiguo@mail.xidian.edu.cn
  • 基金资助:

    国家自然科学基金项目(60832001,61271174);新进教师创新基金项目(K5051303137).

Decoding of convolutional network coding using sequence matrix

GUO Wang-mei, LI Na, WANG Xiao   

  1. State Key Laboratory of Integrated Severs Network, Xidian University, Xi'an 710071, China
  • Received:2012-03-27 Online:2013-07-01 Published:2013-07-01

摘要:

从校验矩阵的角度对网络编码进行分析,给出其编译码的序列矩阵描述。这一方法可将确定型线性网络编码、随机线性网络编码以及卷积网络编码统一到同一矩阵序列结构中,为深刻理解网络编码提供一个新的视角。在此基础上,首次提出一种译码矩阵的求解方案,其复杂度为多项式时间,并给出可行性分析。还讨论了卷积网络编码的译码原理,并给出一些译码性质。最后,用例子简单说明序列矩阵描述的卷积网络编译码方法。

关键词: 通信技术, 网络编码, 卷积网络编码, 译码方案, 网络编码结构

Abstract:

Network coding is analyzed from time sequence in terms of the parity check matrix. As a consequence, the sequence matrix description is given for encoding and decoding of network codes. Meanwhile, the deterministic linear network coding, random linear network coding and convolutional network coding are unified in this framework, which provides deep understanding of network coding. Based on this analysis, a decoding approach is proposed with polynomial-time complexity, the feasibility of the approach is analyzed. Besides, the decoding principle and some properties of the convolutional network coding are discussed. Finally, a case study illustrates the decoding procedure of network coding using sequence matrix description.

Key words: communication, network coding, convolutional network coding, decoding approach, network coding architecture

中图分类号: 

  • TN911.22

[1] Ahlswede R, Cai N, Li S Y R, et al. Network information flow[J]. IEEE Trans on Information Theory, 2000, 46(4): 1204-1216.

[2] Li S Y R, Yeung R W, Cai N. Linear network coding[J]. IEEE Trans on Information Theory, 2003, 49(2): 371-381.

[3] Koetter R, Medard M. An algebraic approach to network coding[J]. IEEE/ACM Transactions on Networking, 2003, 11(5): 782-795.

[4] Ho T, Medard M, Koetter R, et al. A random linear network coding approach to multicast[J]. IEEE Trans on Information Theory, 2006, 52(10): 4413-4430.

[5] Fragouli C, Soljanin E. A connection between network coding and convolutional codes//IEEE Conference on Communications, Paris, France, IEEE Press,2004: 661-666.

[6] Erez E, Feder M. Convolutional network codes//IEEE International Symposium on Information Theory, Chicago, USA,IEEE Press,2004.

[7] Yeung R W, Li S Y R, Cai N, et al. Network Coding Theory//Foundation and Trends in Communications and Information Technology, Boston, USA:Now Pubublishers Inc, 2006.

[8] Li S Y R, Sun Q T. Network coding theory via commutative algebra[J]. IEEE Trans on Inf Theory, 2011, 57(1): 403-415.

[9] Erez E, Feder M. Efficient network code design for cyclic networks[J]. IEEE Trans on Inf Theory, 2011, 56(8): 3862-3878.

[10] Ma Song-ya, Chen Xiu-bo, Luo Ming-xing, et al. Variable-rate convolutional network coding[J]. The Journal of China Universities of Posts and Telecommunications, 2010, 17(3): 91-96.

[11] To Duc, Choi Jinho. Convolutional codes in two-way relay networks with physical-layer network coding[J]. IEEE Transactions on Wireless Communications, 2010, 9(9): 2724-2729.

[12] 司菁菁, 庄伯金, 蔡安妮. 基于网络编码的无线传感器网络生存时间最大化[J].吉林大学学报:工学版, 2011, 41(3): 822-827. Si Jing-jing, Zhuang Bo-jin, Cai An-ni. Network coding based lifetime maximization in wireless sensor network[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 822-827.

[13] 孙建镇, 刘元安, 胡鹤飞, 等. 基于成功递送率的编码感知机会路由机制[J]. 吉林大学学报:工学版,2012, 42(1): 218-222. Sun Jian-zhen, Liu Yuan-an, Hu He-fei, et al. Coding-aware opportunistic routing based on successful delivery probability[J]. Journal of Jilin University (Engineering and Technology Edition),2012, 42(1): 218-222.

[14] Cai N,Guo Wang-mei. The conditions to determine convolutional network coding on matrix representation//The International Symposium on Network Coding (NetCod), Lausanne, Switzerland,IEEE Press,2009: 24-29.

[15] Guo Wang-mei,Cai N. The minimum decoding delay of convolutional network coding[J]. IEICE Trans on A, 2010,93(8):1518-1523.

[16] Ho Tracy, Jaggi S, Vyetrenko S, et al. Universal and robust distributed network codes//The 30th IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China,IEEE Press, 2011: 766-774.

[17] Guo Wang-mei, Cai N, Shi X, et al. Localized dimension growth in random network coding: a convolutional approach//ISIT,St. Petersburger, Russian, 2011.

[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!