吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1315-1320.doi: 10.7964/jdxbgxb201405015
孙轶轩1, 邵春福1, 岳昊1, 朱亮2
SUN Yi-xuan1,SHAO Chun-fu1,YUE Hao1,ZHU Liang2
摘要: 基于某中小城市4881起交通事故现场数据,构建了基于“道路交通事故信息系统”事故数据的特征变量集;以一般事故、严重事故作为二分类标签,建立事故严重程度支持向量机(SVM)分类识别模型,并分别通过网格搜索法、遗传算法进行模型核参数寻优;最后,通过单因素局部灵敏度分析方法,研究各个特征变量对模型测试集分类精度的影响,进一步确定事故严重程度的核心影响因素。结果表明:SVM模型在训练集和测试集上的分类精度均在80%左右,表现出良好的分类识别效果和泛化能力;事故属性、车辆属性中有8个特征变量,显著影响SVM模型的分类精度。
中图分类号:
[1] Peter T, Savolainen P T, Fred L, et al. The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives[J]. Accident Analysis and Prevention, 2011, 43(5):1666-1676. [2] Chang H, Yeh T. Risk factors to driver fatalities in single-vehicle crashes: comparisons between non-motorcycle drivers and motorcyclists[J]. Journal of Transportation Engineering, 2006, 132 (3): 227-236. [3] Malyshkina N, Mannering F. Empirical assessment of the impact of highway design exceptions on the frequency and severity of vehicle accidents[J]. Accident Analysis and Prevention, 2010, 42(1): 131-139. [4] Yamamoto T, Shankar V. Bivariate ordered-response probit model of driver's and passenger's injury severities in collisions with fixed objects[J]. Accident Analysis and Prevention, 2004, 36(5): 869-876. [5] Helai H, Chor C, Haque M. Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis[J]. Accident Analysis and Prevention, 2008, 40(1): 45-54. [6] Lee J, Mannering F. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis[J]. Accident Analysis and Prevention, 2002, 34(2): 149-161. [7] Eluru N, Bhat C, Hensher D. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes[J]. Accident Analysis and Prevention, 2008, 40(3):1033-1054. [8] 李世民,孙明玲,关宏志. 基于累积Logistic模型的交通事故严重程度预测模型[J].交通标准化,2009(3):168-171.Li Shi-min, Sun Ming-ling, Guan Hong-zhi. Prediction model cumulative logistic for severity of road traffic accident[J]. Transport Standardization, 2009(3):168-171. [9] 马壮林,邵春福,李霞. 基于Logistic模型的公路隧道严重事故严重程度的影响因素[J].吉林大学学报:工学版,2010,40(2):423-426.Ma Zhuang-lin, Shao Chun-fu, Li Xia. Analysis of factors affecting accident severity in highway tunnels based on logistic model[J]. Journal of Jilin University(Engineering and Technology Edition),2010,40(2):423-426. [10] Ma Zhuang-lin, Shao Chun-fu, Ma She-qiang, et al. Constructing road safety performance indicators using fuzzy delphi method and grey delphi method[J]. Expert Systems with Applications,2011,38(3):1509-1514. [11] 侯树展,孙小瑞,贺玉龙,等.高速公路交通事故严重程度与交通流特征的关系研究[J].中国安全科学学报,2011(9):106-111.Hou Shu-zhan, Sun Xiao-rui, He Yu-long, et al. Relationships between crash severity and traffic flow characteristics on freeways[J]. China Safety Science Journal,2011(9):106-111. [12] Mussone L, Ferrari A, Oneta M. An analysis of urban collisions using an artificial intelligence model[J]. Accident Analysis & Prevention, 1999, 31(6): 705-718. [13] Chang L Y, Wang H W. Analysis of traffic injury severity: an application of non-parametric classification tree techniques[J]. Accident Analysis & Prevention, 2006, 38(5): 1019-1027. [14] de Ona J, Mujalli R O, Calvo F J. Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks[J]. Accident Analysis and Prevention, 2011, 43 (1): 402-411. [15] Delen D, Sharda R, Bessonov M. Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks[J]. Accident Analysis & Prevention, 2006, 38 (3): 434-444. [16] Xie Yuan-chang , Lord Dominique , Zhang Yun-long. Predicting motor vehicle collisions using bayesian neural network models: an empirical analysis[J]. Accident Analysis & Prevention, 2011, 43(1): 402-411. [17] de Oa Juan, Mujalli Randa Oqab, Calvo Francisco J. Analysis of traffic accident injury severity on spanish rural highways using bayesian networks[J]. Accident Analysis & Prevention, 2007, 39(5): 922-933. [18] Li X G, Lord D, Zhang Y L, et al. Predicting motor-vehicle crashes using support vector machine models[J]. Accident Analysis & Prevention, 2008, 40(4): 1611-1618. [19] 田英杰.支持向量回归机及其应用研究[D].北京:中国农业大学经济管理学院,2005.Tian Ying-jie. Support vector regression and its application[D]. Beijing:College of Economics & Management,China Agricultural University, 2005. [20] 奉国和. SVM分类核函数及参数选择比较[J].计算机工程与应用,2011,47(3):123-128. Feng Guo-he. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications,2011,47(3): 123-128. [21] 董国君,哈力木拉提·买买提,余辉. 基于RBF核的SVM核参数优化算法[J]. 新疆大学学报:自然科学版,2009(3):355-358.Dong Guo-jun, Halmurat Maimait, Yu Hui. Algorithms of optimizing SVM's kernel parameters with RBF kernel[J]. Journal of Xinjiang University(Natural Science Edition),2009(3):355-358. [22] 徐崇刚,胡远满,常禹,等. 生态模型的灵敏度分析[J]. 应用生态学报,2004,15(6):1056-1062.Xu Chong-gang,Hu Yuan-man,Chang Yu,et al.Sensitivity analysis of ecological modeling[J].Chinese Journal of Applied Ecology,2004,15(6):1056-1062. [23] Li Zhi-bin, Liu Pan, Wang Wei, et al. Using support vector machine models for crash injury severity analysis[J]. Accident Analysis & Prevention, 2012(45): 478-486. [24] GA/T859-2010.中华人民共和国公安部. 道路交通事故处理信息数据结构[S]. |
[1] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[2] | 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[3] | 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942. |
[4] | 袁哲明, 张弘杨, 陈渊. 基于特征选择和支持向量机的HIV-1型蛋白酶剪切位点预测[J]. 吉林大学学报(工学版), 2017, 47(2): 639-646. |
[5] | 梁士利, 魏莹, 潘迪, 张玲, 许廷发, 王双维. 基于语谱图行投影的特定人二字汉语词汇识别[J]. 吉林大学学报(工学版), 2017, 47(1): 294-300. |
[6] | 商强, 杨兆升, 张伟, 邴其春, 周熙阳. 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798. |
[7] | 赵云鹏, 于天来, 焦峪波, 宫亚峰, 宋刚. 异形桥梁损伤识别方法及参数影响分析[J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866. |
[8] | 周炳海, 徐佳惠. 基于支持向量机的多载量小车实时调度[J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033. |
[9] | 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073. |
[10] | 马知行, 赵琦, 张浩. 基于傅立叶分析的持家基因预测模型[J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643. |
[11] | 王品, 何璇, 吕洋, 李勇明, 邱明国, 刘书君. 基于多特征支持向量机和弹性区域生长的膝软骨自动分割[J]. 吉林大学学报(工学版), 2016, 46(5): 1688-1696. |
[12] | 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. |
[13] | 申铉京, 翟玉杰, 卢禹彤, 王玉, 陈海鹏. 基于信道补偿的说话人识别算法[J]. 吉林大学学报(工学版), 2016, 46(3): 870-875. |
[14] | 宗芳, 王占中, 贾洪飞, 焦玉玲, 吴杨. 基于支持向量机的通勤日活动-出行持续时间预测[J]. 吉林大学学报(工学版), 2016, 46(2): 406-411. |
[15] | 张浩, 刘海明, 吴春国, 张艳梅, 赵天明, 李寿涛. 基于多特征融合的绿色通道车辆检测判定[J]. 吉林大学学报(工学版), 2016, 46(1): 271-276. |
|