吉林大学学报(工学版) ›› 2004, Vol. ›› Issue (3): 491-495.

• 论文 • 上一篇    下一篇

基于小波和神经网络的传感器故障诊断

李文军1, 张洪坤2, 程秀生2   

  1. 1. 吉林大学 通信工程学院, 吉林 长春 130022;
    2. 吉林大学 汽车工程学院, 吉林 长春 130022
  • 收稿日期:2004-01-05 出版日期:2004-07-01

Sensor fault diagnosis based on wavelet and neural network

LI Wenjun1, ZHANG Hongkun2, CHENG Xiusheng2   

  1. 1. College of Communications Engineering, Jilin University, Changchun 130022, China;
    2. College of Automotive Engineering, Jilin University, Changchun, 130022, China
  • Received:2004-01-05 Online:2004-07-01

摘要: 提出了一种新的基于小波包变换和BP神经网络的传感器突变故障诊断方法。根据小波变换在时域和频域都具有良好的局部化特性对信号特征进行精确定位,根据传感器输出信号的小波包分析提取能量变化率的特征向量,利用BP神经网络进行传感器故障分类。这种方法无需预先建立传感器模型和测量传感器输入信号,通过对小波包系数的削减,减少了冗余数据,提高了故障检测的实时性。仿真实验结果表明了该方法的有效性。

关键词: 人工智能, 传感器突变故障, 小波包变换, 神经网络, 故障诊断

Abstract: A diagnosis method based on wavelet packet transform and BP neural network was proposed to detect and identify sensor abrupt fault. Since wavelet packet transform can accurately localize sensor signal characteristics both in time and frequency domain, it is very suitable for non-stationary signal analysis. After wavelet packet analysis for sensor output, eigenvector of energy changing rate was extracted, and classification of sensor fault was conducted by using BP neural network. The proposed method does not need construction of sensor model and measurement of sensor input. Hence redundant data can be reduced by omitting some wavelet packet coefficients and the capability of fault detection can be improved. Simulation results proved the effectiveness of this method.

Key words: artifical intellrgence, abrupt fault of sensors, wavelet packet transform, neural network, fault diagnosis

中图分类号: 

  • TP271
[1] JIN J, SHI J. Feature-prewrving data compression of stamping tonnage information using wavelets[J]. Technometrics,1999,41(4):327-339.
[2] AKANSU A N, HADDAD R A. Multiresolution Signal Decomposition:Transforms, Subbands, Wavelets[M]. New York:Academic, 1992.
[3] MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Trans Pattern Anal Machine Intell, 1989,11:674-693.
[4] WICKERHAUSER M V. Adapted Wavelet Analysis from Theory to Software[M]. Natick, MA:Wellesley, 1994.
[5] LEES F P. Some data on the failure modes of instruments in the chemical plant environment[J]. Chem Eng,1973,277:418-421.
[6] ANYAKORA S N, LEES F P. Detection of instrument malfunction by process operator[J]. Chem Eng, 1972,264:304-309.
[7] LOPEZ J E, OLIVER K. Overview of wavelet/neural network fault diagnostic methods applied to rotating machinery[C]//Proc Joint Corf Technology Showcase Integrated Monitoring, Diagnostics and Failure Prevention, 1996:405-417.
[8] DONOVAN G C,GERONIMO J S,HARDIN D P,MASSOPUST P R. Construction of orthogonal wavelets using fractal interpolation functions[J]. SIAM Journal of Mathematical Analysis, 1996,27:1158-1192.
[1] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[2] 江涛,林学东,李德刚,杨淼,汤雪林. 基于人工神经网络的放热规律的量化预测[J]. 吉林大学学报(工学版), 2018, 48(6): 1747-1754.
[3] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[6] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[7] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[8] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[9] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[10] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[11] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[12] 底晓强, 王英政, 李锦青, 从立钢, 祁晖. 基于量子细胞神经网络超混沌的视频加密方法[J]. 吉林大学学报(工学版), 2018, 48(3): 919-928.
[13] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[14] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[15] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!