吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (01): 109-115.

• 论文 • 上一篇    下一篇

线性改变切削深度对单晶铜纳米切削的影响

周晓勤1, 朱志伟1, 罗丹1, 赵绍昕1, 赵晓东1,2   

  1. 1. 吉林大学 机械科学与工程学院,长春 130022;
    2. 空军航空大学 基础部,长春 130022
  • 收稿日期:2010-12-10 出版日期:2012-01-01 发布日期:2012-01-01
  • 作者简介:周晓勤(1967-),男,教授,博士生导师.研究方向:先进光学制造.E-mail:xqzhou@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51175221,51075041,50775099);高等学校博士学科点专项科研基金项目(20070183104).

Influence of linearly varying cutting depth on nanocutting of monocrystalline copper

ZHOU Xiao-qin1, ZHU Zhi-wei1, LUO Dan1, ZHAO Shao-xin1, ZHAO Xiao-dong1,2   

  1. 1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2. Foundational Department, Aviation University of Air Force, Changchun 130022, China
  • Received:2010-12-10 Online:2012-01-01 Published:2012-01-01

摘要:

针对单晶铜纳米切削,利用分数阶微积分理论,建立了切削力主趋势分量对切削深度的依赖模型,以描述非线性的尺寸效应。利用近似熵测度,研究了在不同切削阶段中切削力高频扰动的复杂性。研究表明,在切入阶段,切削力经历了由负值到较大正值的突变,工件材料出现弹性失稳以及初期的弹塑性转变;在切削阶段,切削力的主趋势分量呈现明显的低频峰谷现象和非线性的尺寸效应。通过观测工件材料内部的位错形核及位错运动,详细地解释了切削力在线性改变切削深度条件下呈现这种演变特征的根本原因。

关键词: 机床, 纳米切削, 分子动力学, 切削力, 位错运动, 分数阶微积分, 近似熵

Abstract:

A model was built for the dependence of the principal tendency component of the cutting force on the cutting depth in the nanocutting process of the monocrystalline copper to explain the non-linear size effect. The complexity of the high-frequency disturbance of the cutting force during different cutting phases was examined by the approximate entropy measure. The obtained results show that the cutting force changes abruptly from the negative value to a large positive value in the cutting-in phase, appear the phenomena of the elasticity instability and the incipient elasticity-plasticity transition. During the cutting phase, the principal tendency component of the cutting force varies in low-frequency with distinct peaks and valleys, and there presents the non-linear size effect depending on the cutting depth. Observing the dislocation nucleation and the dislocation motion inside the workpiece material, the radical cause of the evolution characteristic of the cutting force during the linearly varying cutting depth was explained.

Key words: machine tool, nanocutting, molecular dynamics, cutting force, dislocation motion, fractional calculus, approximate entropy

中图分类号: 

  • TG501.1


[1] Liu X, De Vor R E, Kapoor S G, et al. The mechanics of machining at the microscale: assessment of the current state of the science
[J]. ASME J Manuf Sci Eng, 2004,126: 666-678.

[2] Pei Q, Lu C, Lee H. Large scale molecular dynamics study of nanometric machining of copper
[J]. Comput Mater Sci, 2007, 41: 177-185.

[3] Zhu P Z, Hu Y Z, Ma T B, et al. Study of AFM-based nano-metric cutting process using molecular dynamics
[J]. Appl Surf Sci, 2010, 256(23): 7160-7164.

[4] Chu C, Tan C. Deformation analysis of nanocutting using atomistic model
[J]. Int J Solid Struct, 2009, 46: 1807-1814.

[5] Lin Z C, Huang J C. A study of the estimation method of the cutting force for a conical tool under nano-scale depth of cut by molecular dynamics
[J]. Nanotechnology, 2008, 19(11): 115701.

[6] Fang F Z, Zhang X D, Hu X T. Cylindrical coordinate machining of optical freeform surfaces
[J]. Optic Express, 2008, 16: 7323-7331.

[7] Shamoto E, Suzuki N, Hino R. Analysis of 3D elliptical vibration cutting with thin shear plane model
[J]. CIRP Ann-Manuf Tech, 2008,57: 57-60.

[8] Kim H S, Lee K I, Lee K M, et al. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement
[J]. Int J Mach Tool Manufact, 2009, 49: 991-997.

[9] Li J, Van Vliet K J, Zhu T, et al. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals
[J]. Nature, 2002, 418(18): 307-310.

[10] Gouldstone A, Van Vliet K J, Suresh S, et al. Simulation of defect nucleation in a crystal
[J]. Nature, 2001,411(7): 656.

[11] Choi Y, Van Vliet K J, Li J, et al. Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines
[J]. Journal of Applied Physics, 2003, 94(9): 6050-6058.

[12] Oh S H, Legros M, Kiener D, et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal
[J]. Nature Materials, 2006(8): 95-100.

[13] Ackland G J, Jones A P. Applications of local crystal structure measures in experiment and simulation
[J]. Physical Review B, 2006, 73:054104.

[14] Pereira Z S, Silva da E Z. Study of defects in Pd thin films on Au(100) using molecular dynamics
[J]. Physical Review B, 2010,81: 195417.

[15] Plimpton S J. Fast parallel algorithms for short-range molecular dynamics
[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

[16] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool
[J]. Modelling Simul Mater Sci Eng, 2010, 18: 015012.

[17] Schuh C A, Mason J K, Lund A C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments
[J]. Nature Materials, 2005(4): 617-621.

[18] Schall P, Cohen I, Weitz1 D A, et al. Visualizing dislocation nucleation by indenting colloidal crystals
[J]. Nature, 2006,440(16): 319-323.

[19] Brocail J, Watremez M, Dubar L. Identification of a friction model for modeling of orthogonal cutting
[J]. Int J Mach Tool Manufact, 2010, 50: 807-814.

[20] Qi H S, Mills B. Formation of a transfer layer at the tool-chip interface during machining
[J]. Wear, 2000, 245: 136-147.

[21] Steven M P. Approximate entropy as a measure of system complexity
[J]. Proc Nati Acad Sci USA, 1991, 88: 2297-2310.

[22] Van Vliet K J, Li J, Zhu T, et al. Quantifying the early stages of plasticity through nanoscale experiments and simulations
[J]. Physical Review B, 2003, 67: 104105.

[23] Chen Y, Ivo P, Xue D. Fractional order control—a tutorial//American Control Conference, Hyatt Regency Riverfront, St. Louis, USA, 2009.

[1] 郑玉彬, 杨斌, 王晓峰, 申桂香, 赵宪卓, 秦猛猛. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报(工学版), 2018, 48(3): 767-772.
[2] 申桂香, 曾文彬, 张英芝, 吴茂坤, 郑玉彬. 最小故障率下数控组合机床平均维修时间确定[J]. 吉林大学学报(工学版), 2017, 47(5): 1519-1526.
[3] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[4] 张英芝, 刘津彤, 申桂香, 戚晓艳, 龙哲. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报(工学版), 2017, 47(1): 169-173.
[5] 孟书, 申桂香, 张英芝, 龙哲, 曾文彬. 基于时间相关的数控机床系统组件更换时间[J]. 吉林大学学报(工学版), 2016, 46(6): 1946-1952.
[6] 李洪洲, 杨兆军, 许彬彬, 王彦鹍, 贾玉辉, 侯超. 数控机床可靠性评估试验周期设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1520-1527.
[7] 王健健, 冯平法, 张建富, 吴志军, 张国斌, 闫培龙. 卡盘定心精度建模及其保持特性与修复方法[J]. 吉林大学学报(工学版), 2016, 46(2): 487-493.
[8] 杨兆军, 杨川贵, 陈菲, 郝庆波, 郑志同, 王松. 基于PSO算法和SVR模型的加工中心可靠性模型参数估计[J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[9] 王晓燕,申桂香,张英芝,孙曙光,戚晓艳,荣峰. 基于故障链的复杂系统故障相关系数建模[J]. 吉林大学学报(工学版), 2015, 45(2): 442-447.
[10] 赵帼娟, 张雷, 卢磊, 韩飞飞, 赵继. 四轴抛光平台综合误差建模及分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1676-1683.
[11] 黄家才, 施昕昕, 李宏胜, 徐庆宏, 石要武. 永磁同步电机调速系统的分数阶积分滑模控制[J]. 吉林大学学报(工学版), 2014, 44(6): 1736-1742.
[12] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[13] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[14] 杨兆军, 杨川贵, 陈菲, 王东亮, 马帅, 刘博. 基于最小二乘算法和SVDUKF算法的电液伺服加载优化[J]. 吉林大学学报(工学版), 2014, 44(2): 392-397.
[15] 陈传海, 杨兆军, 陈菲, 郝庆波, 许彬彬, 阚英男. 基于Bootstrap-Bayes的加工中心主轴可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(01): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!