吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 776-782.doi: 10.13229/j.cnki.jdxbgxb201503014

• • 上一篇    下一篇

高速动车组转向架悬挂刚度特性

石怀龙1, 宋烨1, 邬平波1, 曾京1, 朱海燕1, 2   

  1. 1. 西南交通大学 牵引动力国家重点实验室,成都 610031;
    2.华东交通大学 轨道交通学院,南昌 330013
  • 收稿日期:2013-10-22 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:石怀龙(1986-),男,博士研究生.研究方向:轨道车辆工程, 车辆动力学及强度.
  • 基金资助:
    “十一五”国家科技支撑计划项目(2009BAG12A02); “十二五”国家科技支撑计划项目(2011BAG10B01); “973”国家重点基础研究发展计划项目(2011CB711100); 教育部创新团队发展计划项目(IRT1178); 教育部新世纪优秀人才支持计划项目(NCET-10-0064)

Calculation and testing of suspension stiffness of a bogie of high speed EMU

SHI Huai-long1, SONG Ye1, WU Ping-bo1, ZENG Jing1, ZHU Hai-yan1, 2   

  1. 1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031,China;
    2.School Transportation, East China Jiaotong University, Nanchang 330013,China
  • Received:2013-10-22 Online:2015-05-01 Published:2015-05-01

摘要: 建立了车辆系统数学模型,理论分析了影响转向架悬挂刚度的主要参数,并利用参数试验台对某高速动车组进行悬挂刚度测试,总结了不同条件下的结果分布规律,以验证数学模型和理论分析的可信性。理论分析结果表明:在小半径曲线条件下, 转向架回转阻力系数随着空簧纵向刚度及其横向跨距的变化而显著变化,转向架回转刚度和车辆抗侧滚刚度应联合设计。一、二系悬挂刚度试验结果略大于理论值,最大相差11%,表明车辆组装后进行参数校验的必要性。试验表明:回转阻力系数与偏转角度和转动速度成正比。曲线半径为300 m且空簧有气时,转动速度为0.05 °/s和0.2 °/s时的回转阻力系数分别为0.023和0.065,空簧无气时分别为0.068和0.095,即转动速度越快,回转刚度越大,且空簧无气时的结果显著大于空簧有气时,表明车辆在空簧无气且快速通过小半径曲线时为危险工况。转向架回转刚度的试验值大于理论值,表明在理论计算时应考虑空簧动态刚度特性及其他部件(如抗侧滚扭杆、减振器等)对转向架回转刚度的影响。

关键词: 铁路运输, 动车组, 转向架, 悬挂刚度, 回转阻力

Abstract: A mathematical model of EMU was established to analyze effects of suspension parameters on the suspension stiffness of the bogie. Then lab test was conducted to measure the actual suspension stiffness, which is used to verify the theoretical calculation results. The characteristics and distributions of the suspension stiffness under various conditions were summarized. Theoretical analysis shows that the rotation resistance factor of the bogie fluctuates greatly with the longitudinal stiffness of air springs and the lateral distance between two air springs, especially for small radius curves. Therefore, the rotation stiffness of the bogie and the anti-rolling stiffness of the vehicle should be considered simultaneously in the vehicle design stage. Test results of the primary suspension and second suspension stiffness are both a bit higher than the calculated stiffness with maximum error of 11%, which suggests that parameter verification after the assembling is essential and necessary. The test results also show that the greater are the rational angle and speed, the greater is rotation resistance factor. For a 300 m radius curve at inflated state, the rotation resistance factor is 0.023 with rotational speed of 0.05 °/s, and the resistance factor is 0.065 with rotational speed of 0.2 °/s, indicating that the higher is the speed, the greater is the rotation stiffness. However, at deflated state the corresponding resistance factor is 0.068 and 0.095, much greater than that at inflated state. We can be concluded that it is very dangerous when a vehicle passes small radius curve at high speed. The text results of rotation stiffness of the bogie are greater than calculated ones,and the dynamic characteristics of air spring stiffness and other suspension components should all be considered in theoretial calculations.

Key words: railway transportation, electric multi units(EMU), bogie, suspension stiffness, rotation resistance

中图分类号: 

  • U270.331
[1] 沈志云. 高速列车的动态环境及其技术的根本特点[J]. 铁道学报,1994,28(4):1-5.
Shen Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society,1994,28(4):1-5.
[2] 张曙光,池茂儒,刘丽. 机车车辆动力学研究及发展[J] .中国铁道科学,2007,28(1):56-62.
Zhang Shu-guang,Chi Mao-ru,Liu Li. The dynamics study of railway vehicle and its development[J]. China Railway Science,2007,28(1):56-62.
[3] 刘宏友. 高速列车中的关键动力学问题研究[J]. 中国铁道科学,2004,25(1):136-138.
Liu Hong-you. Study on key dynamics problems of high-speed train[J]. China Railway Science,2004,25(1):136-138.
[4] 池茂儒,张卫华,曾京,等. 高速客车转向架悬挂参数分析[J]. 大连交通大学学报,2007,28(3):13-19.
Chi Mao-ru, Zhang Wei-hua, Zeng jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University,2007,28(3):13-19.
[5] 石怀龙,邬平波,罗仁. 客车转向架回转阻力矩特性[J]. 交通运输工程学报,2013,13(4):45-50.
Shi Huai-long,Wu Ping-bo,Luo Ren. Bogie rotation resistance torque characteristics of passenger car[J]. Journal of Traffic and Transportation Engineering,2013,13(4):45-50.
[6] GM/RT2141-1998. Resistance of railway vehicles to derailment and rollover[S].
[7] IWNICKI S. Handbook of Railway Vehicle Dynamics[M]. USA:CRC Press,2006:453-454.
[8] Wu H,Robeda J. Effect of bogie center plate lubrication on vehicle curving and lateral stability[J]. Vehicle System Dynamics,2004,41(1):292-301.
[9] 张卫华,陈良麒,黄丽湘. 车辆参数测定方法的研究[J]. 铁道车辆, 2000, 38(12): 1-4.
Zhang Wei-hua,Chen Liang-qi, Huang Li-xiang. Research on measurement method for vehicle parameters[J]. Rolling Stock,2000,38(12):1-4.
[10] 高云鹤,张卫华. 新型转向架参数测定试验台的研制[J]. 电力机车与城轨车辆,2010,33(1):37-39.
Gao Yun-he,Zhang Wei-hua. Research on new test-rig for measuring parameter of railway bogie[J]. Electric Locomotives & Mass Transit Vehicles,2010,33(1):37-39.
[11] 陈建政,张卫华,陈良麒. 车体参数测定方法研究[J]. 西南交通大学学报,2000,35(2):155-159.
Chen Jian-zheng,Zhang Wei-hua,Chen Liang-qi. On measuring methods for parameters of car body[J]. Journal of Southwest Jiaotong University,2000,35(2):155-159.
[12] 任利惠,张辉,胡用生. 货车转向架动力学参数测试台研究与试验[J]. 中国铁道科学,2001,22(3):72-78.
Ren Li-hui,Zhang Hui,Hu Yong-sheng. Research and experiment on test-bed for measuring dynamics parameters of freight car bogie[J]. China Railway Science, 2001,22(3):72-78.
[13] Huang Y M, Wang T S. Rotational resistance behavior and field testing of two-axle bogie design[J]. Vehicle System Dynamics,1999,31(1):47-63.
[14] 王秀刚,苏建,曹晓宁,等. 基于旋转矩阵正交性的转向架6自由度平台位姿正解解算[J]. 吉林大学学报:工学版,2013,43(5):1241-1246.
Wang Xiu-gang,Su Jian,Cao Xiao-ning,et al. Forward kinematics solution of bogie 6-DOF platform based on the orthogonality of rotation matrix[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(5):1241-1246.
[1] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[2] 尹紫红, 朱波, 邵国霞, 孔德惠, 蒋良潍. 铁路超重货物作用下的轨道路基响应[J]. 吉林大学学报(工学版), 2017, 47(5): 1446-1452.
[3] 左静, 帅斌, 黄文成. 改进距离熵权MULTIMOORA的铁路应急救援方案搜索[J]. 吉林大学学报(工学版), 2017, 47(4): 1068-1074.
[4] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[5] 牛治慧, 苏建, 张益瑞, 徐观, 谭富星. 基于转向架试验台的轨道不平顺模拟试验[J]. 吉林大学学报(工学版), 2017, 47(2): 400-407.
[6] 王启明, 苏建, 张兰, 陈秋雨, 徐观. 基于L-M算法的正交Stewart平台位姿正解的初值补偿[J]. 吉林大学学报(工学版), 2017, 47(1): 97-104.
[7] 张兰, 苏建, 张益瑞, 王启明, 牛治慧, 徐观. 用于轨道不平顺复现试验的驱动试验谱生成方法[J]. 吉林大学学报(工学版), 2016, 46(5): 1420-1425.
[8] 张益瑞, 苏建, 张兰, 谭富星, 徐观. 轨道车辆转向架一系悬挂刚度测定[J]. 吉林大学学报(工学版), 2016, 46(4): 1083-1089.
[9] 刘玉梅, 赵聪聪, 熊明烨, 郭文翠, 张志远. 基于物元模型的高速轨道车辆传动系可靠性评价[J]. 吉林大学学报(工学版), 2015, 45(4): 1063-1068.
[10] 王秀刚, 苏建, 曹晓宁, 林慧英, 张益瑞, 杨小敏. 基于模拟半车的悬挂自振特性试验[J]. 吉林大学学报(工学版), 2014, 44(6): 1583-1590.
[11] 王秀刚, 刘玉梅, 苏建, 曹晓宁, 张益瑞. 转向架回转力矩测试及运动平台位姿解算[J]. 吉林大学学报(工学版), 2014, 44(01): 35-40.
[12] 王秀刚, 苏建, 曹晓宁, 徐振, 卢海隔, 田宗举. 基于旋转矩阵正交性的转向架6自由度平台位姿正解解算[J]. 吉林大学学报(工学版), 2013, 43(05): 1241-1246.
[13] 曹晓宁, 刘玉梅, 苏建, 王秀刚, 李卓. 转向架质心高度的测定[J]. 吉林大学学报(工学版), 2013, 43(02): 329-333.
[14] 白志范, 李桂中, 王超, 王良, 张志敏. 高速客车转向架构架焊接接头组织与力学性能[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 207-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!