吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 985-990.doi: 10.13229/j.cnki.jdxbgxb201503044

• • 上一篇    下一篇

低密度奇偶校验码的压缩感知重构

张轶, 达新宇, 褚振勇   

  1. 空军工程大学 信息与导航学院,西安 710077
  • 收稿日期:2013-08-23 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 达新宇(1961-),男,教授,博士生导师.研究方向:卫星通信,信道编码理论. E-mail:zhangyi1290@163.com
  • 作者简介:张轶(1986-),男,博士研究生.研究方向:通信信号处理.
  • 基金资助:
    国家自然科学基金项目(60972042,61271250)

Compressed sensing reconstruction of LDPC code

ZHANG Yi, DA Xin-yu, CHU Zhen-yong   

  1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
  • Received:2013-08-23 Online:2015-05-01 Published:2015-05-01

摘要: 针对压缩感知(CS)中由观测噪声引起的信号重建误差问题,提出利用非相关性约束理论作为衡量压缩重建条件的重构误差向量的方法。该方法基于线性分组码中稀疏校验矩阵的零化子特性,建立了以误差向量为目标信号的线性规划问题,实现了低密度奇偶校验(LDPC)码的压缩感知重构。仿真结果表明:在加性高斯白噪声信道和原对偶内点算法下,选取的3种LDPC码均具备较强的信号重构能力,其中MacKay随机码的相关性系数较小,因此在信噪比为-1 dB时就可达到100%的误差向量重构成功率。同时表明在满足误比特率要求下,CS-LDPC码可使系统实现低信噪比下的高可靠性通信。

关键词: 通信技术, 压缩感知, 低密度奇偶校验码, 信号重构, 互相关系数, 零化子矩阵

Abstract: In order to resolve the problem of signal reconstruction error caused by observation noise in Compressed Sensing (CS), a method is proposed to reconstruct error vectors using the theory of non-correlation constraint as the condition. In this method, a linear programming for error vectors is established based on the annihilator property of sparse check matrix; and compressed sensing reconstruction for Low-Density Parity-Check (LDPC) codes is implemented. Under an additive white Gauss noise channel and primal-dual interior point algorithm, simulations show that three selected (LDPC) codes all satisfy non-correlation constraint condition with high reconstruction ability. Moreover, the correlation coefficient of MacKay random codes is smaller, therefore 100% success rate is obtained in reconstructing error vectors with SNR of -1 dB. The simulation results also show that under the condition of satisfying the requirement of Bit Error Rate (BER) performance, high reliability communication can be achieved with low SNR by the proposed CS-LDPC codes.

Key words: communication, compressed sensing, low-density parity-check codes, signal reconstruction, cross-correlation coefficients, annihilator matrix

中图分类号: 

  • TN911.2
[1] Baraniuk R G, Candès E, Elad M, et al.Applications of sparse representation and compressive sensing[J]. Proceedings of the IEEE,2010,98(6):906-909.
[2] 焦李成,杨淑媛,刘芳,等. 压缩感知回顾与展望[J]. 电子学报,2011,39(7):1651-1662.
Jiao Li-cheng, Yang Shu-yuan, Liu Fang, et. al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica,2011,39(7):1651-1662.
[3] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathématique,2008,346(9-10):589-592.
[4] Sarvotham S,Baron D,Baraniuk R G. Compressed sensing reconstruction via belief propagation[R]. Houston:Department of Electrical and Computer Engineering, Rice University, 2006.
[5] Zhang F,Pfister H D. Compressed sensing and linear codes over real numbers[C]∥Information Theory and Applications Workshop, La Jolla, 2008:558-561.
[6] Dimakis A G,Vontobel P O. LP decoding meets LP decoding: A connection between channel coding and compressed sensing[C]∥47th Annual Allerton Conference on Communication, Control, and Computing, Monticello,2009:8-15.
[7] Dimakis A G,Smarandache R,Vontobel P O. LDPC codes for compressed sensing[J]. IEEE Transactions on Information Theory,2012,58(5):3093-3114.
[8] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory,2006,52(2):489-509.
[9] Candès E J,Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory,2005,51(12):4203-4215.
[10] Donoho D L, Elad M,Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory,2006,52(1):6-18.
[11] 贺亚鹏,庄珊娜,李洪涛,等. 基于感知矩阵统计相关系数最小化的压缩感知雷达波形优化设计[J]. 电子与信息学报,2011,33(9):2097-2102.
He Ya-peng, Zhuang Shan-na, Li Hong-tao, et al. Waveform design for compressive sensing radar based on minimizing the statistical coherence of the sensing matrix[J]. Journal of Electronics & Information Technology,2011,33(9):2097-2102.
[12] 肖扬. Turbo与LDPC编解码及其应用[M]. 北京:人民邮电出版社,2010.
[13] Candès E J,Romberg J. l 1-MAGIC: recovery of sparse signals via convex programming[EB/OL]. [2013-04-15]. http://www.acm.caltech.edu/ l1magic.
[14] Scarlett J,Evans J S,Dey S. Compressed sensing with prior information: information-theoretic limits and practical decoders[J]. IEEE Transactions on Information Theory,2013,61(2):427-439.
[15] 王秀敏,陈豪威.基于DVB-S2标准低密度奇偶校验码译码器设计[J].吉林大学学报:工学版,2011,29(6):511-517.
Wang Xiu-min,Chen Hao-wei.Design and implementation of LDPC decoder for DVB-S2[J].Journal of Jilin University(Enginering and Technology Edition),2011,29(6):511-517.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[3] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[4] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[6] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[7] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[8] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[9] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[10] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!