吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1266-1273.doi: 10.13229/j.cnki.jdxbgxb201504035

• • 上一篇    下一篇

大型正交多幕投影系统光辐射补偿算法

韩成1, 2, 张超1, 秦贵和2, 薛耀红1, 杨帆1, 范静涛1, 刘文静1   

  1. 1.长春理工大学 计算机科学与技术学院,长春 130022;
    2.吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2013-11-12 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:韩成(1978-),男,副教授,博士.研究方向:计算机仿真,计算机视觉和智能控制.E-mail:hancheng@cust.edu.cn
  • 基金资助:
    “十一五”国家科技支撑计划重点项目(2009BAE69B00)

An algorithm of optical radiometric compensation for projective system of large-scale orthogonal multi-screens

HAN Cheng1, 2, ZHANG Chao1, QIN Gui-he2, XUE Yao-hong1, YANG Fan1, FAN Jing-tao1, LIU Wen-jing1   

  1. 1.College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2013-11-12 Online:2015-07-01 Published:2015-07-01

摘要: 为了消除CAVE系统中相邻投影幕间的光辐射影响,根据余弦辐射体发光强度的空间分布,建立了光辐射补偿模型,设计了基于GPU的光辐射并行补偿算法。以现有CAVE系统为例,通过分析可知,并行补偿算法可以通过多级补偿得到最佳的补偿效果;第一级补偿大约可以消除80%以上的光辐射影响;只有大约四分之一的图像受到严重影响;如果综合考虑多个投影图像间的多级补偿,那么在大型正交多幕投影系统上展示的视频需要进行预先的补偿处理。为此,根据对补偿结果的分析,提出了一种快速的光辐射补偿方法。在建立的大型正交多幕特种影院中,使用本方法得到了人眼辨别范围内的色彩流畅和颜色亮度均衡一致的图像。

关键词: 虚拟现实, 多投影系统, 图像处理, 光辐射补偿, 并行计算

Abstract: In order to eliminate the effects of optical radiation between adjacent projection screens in CAVE systems, an optical radiometric compensation model is established according to the spatial distribution of optical luminance of cosine radiator. Besides, an optical radiometric parallel compensation algorithm is designed based on GPU technology. By analysis of current CAVE systems, it can be concluded that parallel compensation algorithm can achieve the best compensation result through multi-level compensation. In the first compensation level, more than 80% of optical radiometric influence can be eliminated and only about a quarter of the image is severely affected. When the overall multi-level compensation among multi-projection images is considered, the video displayed on the projective system of large-scale orthogonal multi-screens must be pre-compensated. Therefore, a fast optical radiometric compensation method is proposed according to the analysis of compensation results. This method is applied in two special theaters of large-scale orthogonal multi-screens, and it is demonstrated that images with uniform color and brightness within the distinguishing range of human eyes can be achieved.

Key words: virtual reality, multi-projection system, image processing, optical radiation compensation, parallel computing

中图分类号: 

  • TP391.9
[1] 王修晖, 陆慧娟, 林海. 多投影显示墙画面校正技术综述[J]. 计算机应用研究, 2008, 25(7):1944-1947. Wang Xiu-hui, Lu Hui-juan, Lin Hai. Survey on screen calibration for muliti-projector tiled display wall[J]. Application Research of Computers, 2008, 25(7):1944-1947.
[2] Johnson T, Welch G, Fuchs H, et al. A distributed cooperative framework for continuous multi-projector pose estimation[C]∥Proceedings of IEEE Virtual Reality Conference, Lafayette,2009:35-42.
[3] Nacenta M A, Sallam S, Champoux B, et al. Perspective cursor: perspective -based interaction for multi-display environments[C]∥In CHI'06, ACM, 2006:289-298.
[4] Jiang Z, Jiang N, Mao Y, et al. A multi-projector display wall system driven by chromium framework on PC cluster[C]∥Proc The 12th International Conference on Human-Computer Interaction, 2007.
[5] 曾鸿, 张均东, 何治斌, 等. 船舶轮机模拟器CAVE系统设计与关键技术研究[J]. 系统仿真学报,2012,24(1):123-126,140. Zeng Hong, Zhang Jun-dong, He Zhi-bin, et al. Marline engine room simulator CAVE design and key technologies research[J]. Journal of System Simulation, 2012, 24(1):123-126,140.
[6] 权巍, 范静涛, 蒋振刚, 等. 一种基于CAVE的交互式全景视频显示方法[J]. 微电子学与计算机, 2012,29(5):134-137. Quan Wei, Fan Jing-tao, Jiang Zhen-gang, et al. An approach to display panoramic video interactively based on CAVE[J]. Microelectronics &Computer, 2012, 29(5):134-137.
[7] 林柏纬, 潘志庚, 杨建, 等. 基于PC架构的高性能CAVE系统[J]. 计算机辅助设计与图形学学报, 2003,15(6): 825-828. Lin Bo-wei, Pan Zhi-geng, Yang Jian, et al. PC based high performance CAVE system[J]. Journal of Computer-aided Design & Computer Graphics, 2003,15(6): 825-828.
[8] Bimber O, Iwai D, Wetzstein G, et al. The visual computing of projector-camera systems[J]. Computer Graphics Forum, 2008, 27(8):2219-2245.
[9] Grundhofer A, Bimber O. Real-time adaptive radiometric compensation[J]. Visualization and Computer Graphics. 2008,14(1):97-108.
[10] Wetzstein G, Bimber O. Radiometric compensation through inverselight transport[C]∥Proceedings of the 15th Pacific Conference on Computer Graphics and Applications,2007:391-399.
[11] Fujii K, Grossberg M D, Nayar S K. A projector-camera system with real-time photometric adaptation for dynamic environments[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005:814-821.
[12] 王修晖, 华炜, 鲍虎军. 多投影显示墙的全局颜色校正[J]. 计算机辅助设计与图形学学报, 2007,19(1):96-101. Wang Xiu-hui, Hua Wei, Bao Hu-jun. Global color correction for multi-projector tiled display wall[J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(1):96-101.
[13] Bhasker E S, Majumder A. Geometric modeling and calibration of planar multi-projector displays using rational bezier patches[C]∥2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007),Minneapolis, Minnesota, USA,2007:1-8.
[14] Steele R M, Ye Mao, Yang Rui-gang. Color calibration of multi-projector displays through automatic optimization of hardware settings[C]∥2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,2009:55-60.
[15] Qing Shu, Lu Dong-ming, He Yue-ming. Scalable arbitrary surrounded surface calibration for multi-projector rendering application[C]∥Proc 13th Intl Conference on Virtual Systems and Multimedia, 2007:342-349.
[16] 周艳霞,秦开怀,罗建利. 多投影仪组合显示的自反馈亮度校正[J]. 计算机应用, 2011,31(1):65-69. Zhou Yan-xia, Qin Kai-huai, Luo Jian-li. Self-feedback photometric correction approach for multi-projector tiled display[J]. Journal of Computer Applications, 2011,31(1):65-69.
[1] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[2] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[3] 梁士利, 柴宗谦, 张玲, 吴颜生, 曹春雷. 基于偏X型细胞自动机的图像加密方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1653-1660.
[4] 许岩岩, 陈辉, 刘家驹, 袁金钊. CELL处理器并行实现立体匹配算法[J]. 吉林大学学报(工学版), 2017, 47(3): 952-958.
[5] 何光, 张铭, 袁双石. 微机电系统后坐保险机构温度相关动态特性[J]. 吉林大学学报(工学版), 2017, 47(1): 145-150.
[6] 李健, 李赫宇, 姚汝婧, 吴林. 基于均值滤波的改进 Canny 算法在核磁共振图像边缘检测中的应用[J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709.
[7] 宋康, 陈潇凯, 林逸. 动力总成悬置系统的稳健设计[J]. 吉林大学学报(工学版), 2016, 46(3): 692-699.
[8] 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[9] 张金果,郭海涛,吴君鹏,李依桐. 改进的最小交叉Tsallis熵的小目标声呐图像分割[J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[10] 佴威至, 刘越, 姚鹏. 车辆模拟器中多类型通信的一种管理方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 189-192.
[11] 黄德天, 刘雪超, 吴志勇, 梁敏华. 基于CameraLink的高速图像采集处理系统设计[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 309-312.
[12] 冯鑫, 王晓明, 党建武, 沈瑜. 基于插值Directionlet变换的图像融合方法[J]. 吉林大学学报(工学版), 2013, 43(04): 1127-1132.
[13] 金立生, 咸化彩, 祖力, 孙玉芹, 侯海晶, 牛清宁. 小区民用车辆车牌自动识别算法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 166-169.
[14] 段跃华, 张肖宁. 基于CT断层扫描图像的混凝土粗集料三维虚拟筛分[J]. , 2012, 42(04): 918-923.
[15] 王芳荣, 林晓珑, 王晓鹏, 张佳全, 张铁强, 冯毅. 粘胶长丝在线实时监测系统设计与处理算法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 288-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!