吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1614-1620.doi: 10.13229/j.cnki.jdxbgxb20170928
刘哲1, 徐涛2, 宋余庆1, 徐春艳1
LIU Zhe1, XU Tao2, SONG Yu-qing1, XU Chun-yan1
摘要: 针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform, NSCT)和相似信息鲁棒主成分分析(Robust principle component analysis, RPCA)模型的图像融合技术。首先对源图像获取图像块构造初始矩阵,通过对构造矩阵进行NSCT分解获得高频和低频部分,利用提出的具有相似信息低秩矩阵模型将低频成分分解成低秩矩阵和稀疏误差矩阵,再分别对两幅图像的低秩矩阵、稀疏误差矩阵及高频成分采用绝对值最大法融合规则进行融合,最后通过逆变换得到融合图像。MRI和CT的脑部图像的实验分析结果表明,本文算法可以更好地保留源图像中的边缘和纹理信息。
中图分类号:
[1] Du J, Li W, Lu K, et al.An overview of multi-modal medical image fusion[J]. Neurocomputing, 2016, 215:3-20. [2] Yin H.Sparse representation with learned multiscale dictionary for image fusion[J]. Neurocomputing, 2015, 148:600-610. [3] Yin H, Li Y, Chai Y, et al.A novel sparse-representation-based multi-focus image fusion approach[J]. Neurocomputing, 2016, 216:216-229. [4] Liu Y, Liu S, Wang Z.A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24:147-164. [5] Ren K, Xu F.Super-resolution images fusion via compressed sensing and low-rank matrix decomposition[J]. Infrared Physics and Technology, 2015, 68:61-68. [6] Wang Q, Li S, Qin H, et al.Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis[J]. Information Fusion, 2015, 26(C):103-121. [7] Candès E J,Li X,Ma Y,et al.Robust principal component analysis[J].Journal of the ACM,2011,58(3):11. [8] Ni Y, Sun J, Yuan X, et al.Robust low-rank subspace segmentation with semidefinite guarantees[C]∥IEEE International Conference on Data Mining Workshops,IEEE,Computer Society,2010:1179-1188. [9] Liu G, Lin Z, Yan S, et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184. [10] Candès,Emmanuel J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9/10):589-592. [11] 史加荣, 郑秀云, 魏宗田,等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6):1601-1605. Shi Jia-rong,Zheng Xiu-yun, Wei Zong-tian,et al.Survey on algorighms of low-rank matrix recovery[J].Application Research of Computers,2013, 30(6):1601-1605. [12] 刘园园. 快速低秩矩阵与张量恢复的算法研究[D]. 西安:西安电子科技大学智能感知与图像理解教育部重点实验室, 2013. Liu Yuan-yuan.Algorithm research of fast low-rand matrix and tenser recovery[D].Xi'an: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University,2013. [13] Chandrasekaran V, Sanghavi S, Parrilo P A, et al.Rank-sparsity incoherence for matrix decomposition[J]. SIAM Journal on Optimization, 2011, 21(2):572-596. [14] Cai J F,Cand S E J,et al.A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization,2010,20(4):1956-1982. [15] Cunha A L D, Zhou J, Do M N.The nonsubsampled contourlet transform:Theory Desigh,and Applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3100. [16] 崔玲玲, 卢朝阳, 李静,等. 基于非下采样Contourlet域高斯混合模型的布匹瑕疵识别算法[J]. 吉林大学学报:工学版, 2013, 43(3):734-739. Cui Ling-ling, Lu Zhao-yang,Li Jing, et al.Fabric defect recognition algorithm based on Gaussian mixture model in nonsubsampled contourlet domain[J].Journal of Jilin University(Engineering and Technology Edition),2013, 43(3):734-739. [17] http://www.med.harvard.edu/AANLIB/.[2017-07-08]. [18] Kumar B K S. Image fusion based on pixel significance using cross bilateral filte[J]. Signal, Image and Video Processing, 2015, 9(5):1193-1204. [19] Xydeas C S, Petrovic V.Objective image fusion performance measure[J]. Military Technical Courier, 2000, 36(4):308-309. [20] 郭雷,李晖晖,鲍永生. 图像融合[M]. 北京:电子工业出版社,2008. [21] Prakash O, Srivastava R, Khare A.Biorthogonal wavelet transform based image fusion using absolute maximum fusion rule[C]∥Information and Communication Technologies,IEEE,2013:577-582. [22] Jiao Z, Shao J, Xu B.A Novel Multi-focus Image Fusion Method Using NSCT and PCNN[M].Berlin Heidelberg:Springer,2012:161-170. [23] Niu Y, Shen L.The optimal multi-objective optimization using PSO in blind color image fusion[C]∥International Conference on Multimedia & Ubiquitous Engineering,IEEE Computer Society, 2007:970-975. [24] 刘羽, 汪增福. 结合小波变换和自适应分块的多聚焦图像快速融合[J].中国图象图形学报, 2013, 18(11):1435-1444. Liu Yu, Wang Zeng-fu.Multi-focus image fusion based on wavelet transform and adaptive block[J].Journal of Image and Graphics.2013, 18(11):1435-1444. [25] Li S, Kang X, Hu J.Image fusion with guided filtering[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2013, 22(7):2864-2875. |
[1] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[2] | 梁士利, 柴宗谦, 张玲, 吴颜生, 曹春雷. 基于偏X型细胞自动机的图像加密方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1653-1660. |
[3] | 何光, 张铭, 袁双石. 微机电系统后坐保险机构温度相关动态特性[J]. 吉林大学学报(工学版), 2017, 47(1): 145-150. |
[4] | 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058. |
[5] | 李健, 李赫宇, 姚汝婧, 吴林. 基于均值滤波的改进 Canny 算法在核磁共振图像边缘检测中的应用[J]. 吉林大学学报(工学版), 2016, 46(5): 1704-1709. |
[6] | 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998. |
[7] | 韩成, 张超, 秦贵和, 薛耀红, 杨帆, 范静涛, 刘文静. 大型正交多幕投影系统光辐射补偿算法[J]. 吉林大学学报(工学版), 2015, 45(4): 1266-1273. |
[8] | 康冰, 刘富, 魏祺韡. 基于光谱融合的掌纹精细纹路提取[J]. 吉林大学学报(工学版), 2015, 45(4): 1274-1280. |
[9] | 王晓文1, 2, 赵宗贵3, 庞秀梅4, 刘敏5. 图的图像融合方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1203-1208. |
[10] | 张金果,郭海涛,吴君鹏,李依桐. 改进的最小交叉Tsallis熵的小目标声呐图像分割[J]. 吉林大学学报(工学版), 2014, 44(3): 834-839. |
[11] | 杨扬, 戴明, 周箩鱼, 孙明超. 基于非下采样Bandelet变换的多聚焦图像融合[J]. 吉林大学学报(工学版), 2014, 44(2): 525-530. |
[12] | 王昕, 李玮琳, 刘富. 小波域CT/MRI医学图像融合新方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28. |
[13] | 包磊, 徐其志. 基于PCA变换和光谱补偿的遥感影像融合方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88-91. |
[14] | 黄德天, 刘雪超, 吴志勇, 梁敏华. 基于CameraLink的高速图像采集处理系统设计[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 309-312. |
[15] | 李娟, 南旭良, 毕思远, 吴微. 改进多目标粒子群优化算法及在图像融合中的应用[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 477-480. |
|