吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1446-1452.doi: 10.13229/j.cnki.jdxbgxb201705016

• • 上一篇    下一篇

铁路超重货物作用下的轨道路基响应

尹紫红, 朱波, 邵国霞, 孔德惠, 蒋良潍   

  1. 西南交通大学 土木工程学院,成都 610031
  • 收稿日期:2016-04-25 出版日期:2017-09-20 发布日期:2017-09-20
  • 作者简介:尹紫红(1971-),男,副教授,博士.研究方向:道路与铁道工程.E-mail:71yzh@163.com
  • 基金资助:
    国家留学基金管理委员会项目(201507005063); 国家自然科学基金项目(51378441)

Response of railway track and subgrade under the effect overweight goods

YIN Zi-hong, ZHU Bo, SHAO Guo-xia, KONG De-hui, JIANG Liang-wei   

  1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2016-04-25 Online:2017-09-20 Published:2017-09-20

摘要: 针对超重货物作用下轨道路基力学响应行为及基床结构设计问题,基于土体弹塑性理论建立了轨道-路基一体化模型,分析了轨道、路基在超重货物作用下的响应规律,揭示了其力学性能时空演化机制,提出了超重货物作用下基床整体厚度建议值。结果表明:超重货物作用下,钢轨所受动弯应力未超出允许值;枕上最大压力为222.2 kN,接近Ⅲ型枕轨下截面设计承载能力230 kN;道床承载力不满足超重货物运输要求,因此在列车通过前后应对道床进行充分捣固密实;基床顶面最大动应力为197.37 kPa,超出了A组填料临界动应力169 kPa;建议超重货物作用下基床整体厚度取为4.3 m。研究成果可为超重货物的安全运输和轨道、路基的养护维修提供理论依据及技术参考。

关键词: 铁路运输, 超重货物, 一体化模型, 应力分布, 基床设计

Abstract: To solve the problem of mechanical response behavior of track and subgrade, and the structure design of subgrade bed under overweight goods, an integrated model of track and subgrade was established. Based on soil elastic-plastic theory, the response laws of the track and subgrade under overweight good were analyzed. The mechanism of the spatio-temporal evolution of the mechanical properties were revealed, and the overall thickness of the track and subgrade was recommended under overweight goods. Results show that, the dynamic bending stress value imposed on the rail does not exceed the allowable value. The maximum pressure of the sleeper is 222.2 kN, which is close to the designed bearing capacity, 230 kN, of the cross-section of type Ⅲ sleeper. The bearing capacity of the ballast track structure does not satisfy the transportation requirement of overweight goods. Therefore, the subgrade bed must be adequately tamped and compacted before and after the trains pass the railway. The maximum dynamic stress at the top of the subgrage bed is 197.37 kPa, which is more than the critical dynamic stress, 169 kPa, of group A filler. The overall thickness of the track and subgrade should be 4.3 for overweight goods. The results of this work can provide theoretical basis and technical reference for the safe transportation of overweight goods and the maintenance of the track and subgrade.

Key words: railway transportation, overweight goods, integration model, stress distribution, subgrade bed design

中图分类号: 

  • U213.1
[1] 陈亮.超重货物运输安全相关理论及对策研究[D].北京:北京交通大学交通运输学院,2010.
Chen Liang. Study of transportation safety related theories and countermeasures for overweight freight[D]. Beijing: School of Transportation, Beijing Jiaotong University, 2010.
[2] 铁道部.铁路超重超限货物运输规则[M].北京:中国铁道出版社,2007.
[3] 尹晔飞.超限超重货物运输方案研究[D].长沙:中南大学交通运输工程学院,2009.
Yin Ye-fei. Research on project of the special train of out-of-gauge and overweight goods transportation[D].Changsha: School of Traffic and Transportation, Central South University, 2009.
[4] 刘立存.铁路超限超重货物运输组织研究[D].长沙:中南大学交通运输工程学院,2006.
Liu Li-cun. Research on organization of out-of-gauge and overweight goods transportation[D]. Changsha: School of Traffic and Transportation, Central South University, 2006.
[5] 赵菲.超限超重货物办理站资质管理相关问题的研究[D]. 北京:北京交通大学交通运输学院,2010.
Zhao Fei. Study on qualification and management of handing station for out-of-gauge and overweight goods[D]. Beijing: School of Transportation, Beijing Jiaotong University, 2010.
[6] 张长军.超重货物装载偏心条件下桥梁活荷载计算方法研究[D].成都:西南交通大学交通运输与物流学院,2015.
Zhang Chang-jun. Research on calculation method of live load on bridge under condition of eccentric overweight goods loading[D].Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2015.
[7] 胡玉明,黄英,古海东.排桩支护结构内力与变形三维有限元数值分析[J].吉林大学学报:工学版,2016,46(2):445-450.
Hu Yu-ming, Huang Ying, Gu Hai-dong. Three-dimensional finite element analysis of internal forces and displacement of scattered row piles[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(2):445-450.
[8] 岳蓓蓓.高速货运重载铁路有砟轨道及路基动应力分析[D].天津:河北工业大学土木与交通学院,2014.
Yue Bei-bei. Analysis of dynamic stress of high-speed freight heavy haul railway ballast track and subgrade[D].Tianjin: School of Civil Engineering and Transportation, Hebei University of Technology, 2014.
[9] 吕文强.大轴重重载铁路路基基床结构设计方法及技术标准研究[D]. 成都:西南交通大学土木工程学院,2015.
Lyu Wen-qiang. Study of subgrade structure design theory and key technology on heavy haul railway of large axle load[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2015.
[10] 郭抗美,王岩,叶庆志,等.重载铁路路基基床结构设计研究[J].铁道工程学报,2014,31(11):1-5.
Guo Kang-mei, Wang Yan, Ye Qing-zhi, et al. Design research on the subgrade structure of heavy haul railway[J].Journal of Railway Engineering,2014,31(11) :1-5.
[11] 相颖慧.遂渝铁路无砟轨道路涵过渡段性能实车测试及路基结构FEM分析[D].成都:西南交通大学土木工程学院,2008.
Xiang Ying-hui. Field test on subgrade-culvert transition performance of ballastless track and subgrade FEM analysis on Suiyu railway[D].Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2008.
[12] 刘晶磊,宋楚国,叶庆志,等.重载铁路路基基床结构强度控制设计方法研究[J].铁道工程学报,2015,32(2):33-38.
Liu Jing-lei, Song Chu-guo, Ye Qing-zhi,et al. Study on strength control design method of heavy-haul railway subgrade bedding structure[J].Journal of Railway Engineering,2015,32(2):33-38.
[13] 葛如生.阳安线基床病害整治[D]. 成都:西南交通大学土木工程学院,2003.
Ge Ru-sheng. The renovation of railway roadbed disease on Yang'an[D].Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2003.
[14] 黄维栋.尼日利亚铁路路基主要设计原则的确定[J].山西建筑,2008,34(9):294-295.
Huang Wei-dong. Determination of major principles for railway bed design in Nigeria[J]. Shanxi Architecture,2008,34(9):294-295.
[1] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[2] 左静, 帅斌, 黄文成. 改进距离熵权MULTIMOORA的铁路应急救援方案搜索[J]. 吉林大学学报(工学版), 2017, 47(4): 1068-1074.
[3] 牛治慧, 苏建, 张益瑞, 徐观, 谭富星. 基于转向架试验台的轨道不平顺模拟试验[J]. 吉林大学学报(工学版), 2017, 47(2): 400-407.
[4] 王启明, 苏建, 张兰, 陈秋雨, 徐观. 基于L-M算法的正交Stewart平台位姿正解的初值补偿[J]. 吉林大学学报(工学版), 2017, 47(1): 97-104.
[5] 张益瑞, 苏建, 张兰, 谭富星, 徐观. 轨道车辆转向架一系悬挂刚度测定[J]. 吉林大学学报(工学版), 2016, 46(4): 1083-1089.
[6] 刘玉梅, 赵聪聪, 熊明烨, 郭文翠, 张志远. 基于物元模型的高速轨道车辆传动系可靠性评价[J]. 吉林大学学报(工学版), 2015, 45(4): 1063-1068.
[7] 石怀龙, 宋烨, 邬平波, 曾京, 朱海燕. 高速动车组转向架悬挂刚度特性[J]. 吉林大学学报(工学版), 2015, 45(3): 776-782.
[8] 兰凤崇, 李忠超, 周云郊, 陈吉清. 铝镁合金单搭接胶接接头应力分布及强度预测[J]. 吉林大学学报(工学版), 2015, 45(3): 726-732.
[9] 张霖, 赵宏伟, 杨倚寒, 马智超, 黄虎, 马志超. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版), 2013, 43(06): 1558-1565.
[10] 王秀刚, 苏建, 曹晓宁, 徐振, 卢海隔, 田宗举. 基于旋转矩阵正交性的转向架6自由度平台位姿正解解算[J]. 吉林大学学报(工学版), 2013, 43(05): 1241-1246.
[11] 李成, 朱红红, 铁瑛, 何龙. 单搭胶/螺栓混合连接结构的应力分布与载荷分配[J]. 吉林大学学报(工学版), 2013, 43(04): 933-938.
[12] 曹晓宁, 刘玉梅, 苏建, 王秀刚, 李卓. 转向架质心高度的测定[J]. 吉林大学学报(工学版), 2013, 43(02): 329-333.
[13] 李成,刘治华,张平 . 具有初始位移的两层转子结构复合材料储能飞轮的应力及位移分析[J]. 吉林大学学报(工学版), 2007, 37(04): 828-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .