吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 610-617.doi: 10.13229/j.cnki.jdxbgxb20161369

• • 上一篇    下一篇

双门限唐检测改进算法

张超逸1, 2, 李金海1, 阎跃鹏1   

  1. 1.中国科学院微电子研究所,北京 100029;
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-12-18 出版日期:2018-03-01 发布日期:2018-03-01
  • 作者简介:张超逸(1990-),男,博士研究生. 研究方向:卫星导航技术. E-mail:zhangchaoyi@ime.ac.cn
  • 基金资助:
    国家自然科学基金项目(61271423)

Improved Tong detection algorithm with double thresholds

ZHANG Chao-yi1, 2, LI Jin-hai1, YAN Yue-peng1   

  1. 1.Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
    2.University of Chinese Academy, Beijing 100049, China
  • Received:2016-12-18 Online:2018-03-01 Published:2018-03-01

摘要: 针对传统唐检测算法中驻留次数过多导致检测确认速度较慢的问题,提出了一种基于双门限的唐检测改进算法。该算法将检测统计量与两级门限相比较,并根据比较结果对检测计数器进行加减操作,使计数器值能更快速地满足检测条件,从而减少了检测时间。对双门限唐检测改进算法的系统虚警概率、系统检测概率和平均驻留次数进行了理论推导与仿真验证。仿真结果表明,通过合理设置第二级门限的数值,改进算法可在检测性能基本不受影响的前提下有效减少平均驻留次数,提高检测确认速度。

关键词: 通信技术, 全球导航卫星系统, 唐检测, 双门限, 平均驻留次数

Abstract: Long due time in traditional Tong detection algorithm results in slow speed of detection and confirmation. In order to solve this problem, an improved Tong detection algorithm with double thresholds is proposed. By comparing the detection statistic with two-stage thresholds, the detection condition of the algorithm can be met more quickly after a few logical operations on the counter, which greatly reduces the detection time. The false alarm probability, the detection probability and the average dwell times of the proposed algorithm are analyzed and verified. Simulation results indicate that the proposed algorithm can maintain the detection performance and reduce the average dwell rimes effectively if a second threshold is set suitably.

Key words: communication technology, global navigation satellite system, Tong detection, double thresholds, average dwell times

中图分类号: 

  • TN911.23
[1] Zhu Z, Graas F V, Pelgrum W.C/A code cross-correlation at a high doppler offset[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1826-1838.
[2] 刘晓明, 张鹤, 吴皓威, 等.高动态环境下长码扩频信号快速捕获算法[J].电子与信息学报, 2016, 38(6): 1398-1405.
Liu Xiao-ming, Zhang He, Wu Hao-wei, et al.Rapid DSSS signal acquisition algorithm under high dynamic environment[J].Journal of Electronics & Information Technology, 2016, 38(6): 1398-1405.
[3] Zhu C, Fan X.A novel method to extend coherent integration for weak GPS signal acquisition[J].IEEE Communications Letters, 2015, 19(8): 1343-1346.
[4] Renzo M D, Annoni L A, Graziosi F, et al.A novel class of algorithms for timing acquisition of differential transmitted reference UWB receivers: architecture, performance analysis and system design[J].IEEE Transactions on Wireless Communications, 2008, 7(6): 2368-2387.
[5] Kaplan E D, Hegarty C H.Understanding GPS: Principles and Applications[M].Boston: Artech House, 2006: 223-227.
[6] 马琳, 崔嵬, 吴嗣亮.极低信噪比环境下含近邻约束的改进唐检测判决算法[J].系统工程与电子技术, 2011, 33(8): 1745-1749.
Ma Lin, Cui Wei, Wu Si-liang.Improved Tong multiple trial algorithm with near neighbor constraint in extremely low SNR condition[J].Systems Engineering and Electronics, 2011, 33(8): 1745-1749.
[7] 马琳, 崔嵬, 田静, 等.基于马尔可夫链的含有检测次数约束条件的唐检测器[J].宇航学报, 2011, 32(8): 1799-1804.
Ma Lin, Cui Wei, Tian Jing, et al.Study on Tong detector with number of detection times constraint based on Markov chain[J].Journal of Astronautics, 2011, 32(8): 1799-1804.
[8] Park H, Lee S.PN code acquisition technique with an adaptive dwell time in DS-SS system[C] ∥ 23rd International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 2015:341-345.
[9] 谢岗.GPS原理与接收机设计[M].北京: 电子工业出版社, 2009: 286-287.
[10] Proakis J G.数字通信[M].4版.北京: 电子工业出版社, 2003: 29-31.
[11] 姚铮, 崔晓伟, 陆明泉, 等.应用于GPS接收机的序贯检测器性能分析[J].清华大学学报:自然科学版, 2007, 47(7):1166-1169.
Yao Zheng, Cui Xiao-wei, Lu Ming-quan, et al.Performance analysis of sequential detector for GPS receivers[J].Journal of Tsinghua University(Science and Technology), 2007, 47(7): 1166-1169.
[12] 李思超, 叶甜春, 徐建华.唐检测器的驻留时间及检测性能分析[J].电子测量技术, 2009, 34(3): 53-55.
Li Si-chao, Ye Tian-chun, Xu Jian-hua.Analysis on resident time and detection performance of tong detector[J].Electronic Measurement Technology, 2009, 34(3): 53-55.
[13] 朱云龙, 丑武胜, 杨东凯.Tong检测算法性能分析及参数设置[J].北京航空航天大学学报, 2015, 41(3): 418-423.
Zhu Yun-long, Chou Wu-sheng, Yang Dong-kai.Performance analysis and parameter setting for Tong detection algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 418-423.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[8] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[9] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[10] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[11] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[12] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[13] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[14] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
[15] 栾文鹏, 刘永磊, 王鹏, 金志刚, 王健. 基于可信平台模块的能源互联网新型统一安全架构[J]. 吉林大学学报(工学版), 2017, 47(6): 1933-1938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!