吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 2076-2082.doi: 10.13229/j.cnki.jdxbgxb20180996

• • 上一篇    下一篇

仿蝎子振源定位机理的位置指纹室内定位方法

刘富1,2(),权美静2,王柯2,刘云2,康冰2,韩志武3,侯涛2,3()   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
    2. 吉林大学 通信工程学院, 长春 130022
    3. 吉林大学 生物工程仿生教育部重点实验室, 长春 130022
  • 收稿日期:2018-09-28 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 侯涛 E-mail:liufu@jlu.edu.cn;ht_happy@jlu.edu.cn
  • 作者简介:刘富(1968-),男,教授,博士生导师. 研究方向:模式识别.E-mail:liufu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(51835006)

Indoor positioning method based on location fingerprinting of imitating mechanism of scorpion vibration source

Fu LIU1,2(),Mei-jing QUAN2,Ke WANG2,Yun LIU2,Bing KANG2,Zhi-wu HAN3,Tao HOU2,3()   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    2. College of Communication Engineering, Jilin University, Changchun 130022, China
    3. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2018-09-28 Online:2019-11-01 Published:2019-11-08
  • Contact: Tao HOU E-mail:liufu@jlu.edu.cn;ht_happy@jlu.edu.cn

摘要:

针对基于接受信号强度(RSS)的位置指纹室内定位方法易受到多径效应及噪声干扰而导致定位精度低这一问题,提出了一种仿蝎子振源定位机理的位置指纹室内定位方法。该方法首先仿蝎子的 n / 1 神经元构型构建神经元结构对振动信号进行编码,将振动信号转化为脉冲。然后,提取脉冲作为位置指纹特征,并利用该脉冲建立位置指纹特征库。最后,用加权K近邻(WKNN)算法进行振源位置估计。为验证本文算法的有效性,模仿蝎子生理结构,搭建了一套仿蝎子振动感知的振动信号采集系统,在室内环境中进行用户踏步信号的采集,并根据振动数据进行定位试验。结果表明:本文提出的仿蝎子 n / 1 神经元构型的位置指纹定位方法比基于RSS的位置指纹定位方法的平均定位准确度提高了0.148 4 m。

关键词: 信息处理技术, 室内定位, 蝎子, 位置指纹, 加权K近邻

Abstract:

The fingerprint indoor localization method based on the Received Signal Strength (RSS) is vulnerable to multipath effect and noise interference, resulting in low positioning accuracy. To solve this problem, an indoor positioning method based on location fingerprinting of imitating the mechanism of scorpion vibration source location is proposed. Firstly, the method imitates the n/1 neuron configuration of scorpion to construct the neuron structure, in order to encode the vibration signal and transform the vibration signal into pulses. Secondly, pulses are extracted as the location fingerprint feature, and then the location fingerprint feature database is established by the number of pulses. Finally, the Weighted K-Nearest Neighbours algorithm is used to estimate the position of vibration source. To verify the performance of the proposed algorithm, a vibration signal acquisition system is set up to imitate the vibration perception of scorpions. It is used to collect the user's step signals in the indoor environment. The experimental results indicate that the proposed method can improve the average positioning accuracy by 0.148 4 meters compared with the location fingerprinting based on RSS.

Key words: information processing technology, indoor positioning, scorpions, location fingerprinting, weighted K-nearest neighbors

中图分类号: 

  • TN911.73

图1

位置指纹定位示意图"

图2

沙蝎BCSS分布图"

图3

蝎子神经元的 n / 1 构型"

图4

基于加速度计的位置指纹室内定位系统连接框图"

图5

参考点平面示意图"

图6

试验现场"

图7

传感器的布置"

图8

振源信号样本"

图9

信号放电脉冲"

表1

平均定位误差"

平均定位误差/m
KNN WKNN

1/1构型

2/1构型

3/1构型

5/1构型

7/1构型

0.5384

0.5096

0.3952

0.4384

0.4721

0.4839

0.4605

0.3517

0.3925

0.4182

RSS 0.5569 0.5001

图10

误差距离的累计分布函数"

1 He S N , Chan S H G . Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons[J]. IEEE Communications Surveys & Tutorials. 2016, 18(1): 466-490.
2 Dwiyasa F , Lim M H , Ong Y S , et al . Extreme learning machine for indoor location fingerprinting[J]. Multidimensional Systems and Signal Processing, 2017, 28(3): 867-883.
3 Niculescu D , Nath B . Ad Hoc positioning system(APS) using AOA[C]∥IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, San Francisco, CA, USA, 2003: 2926-2931.
4 Alavi B , Pahlavan K . Modeling of the TOA-based distance measurement error using UWB indoor radio measurements[J]. IEEE Communications Letters, 2006, 10(4): 275-277.
5 Ma W K , Vo B N , Singh S S , et al . Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3291-3304.
6 Tian Xiao-hua , Shen Ruo-fei , Liu Duo-wen , et al . Performance analysis of RSS fingerprinting based indoor localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(10): 2847-2861.
7 Bahl P , Padmanabhan V N . RADAR: an in-building RF-based user location and tracking system[J/OL].[2018-09-20]. https:∥.
8 Youssef M , Agrawala A . The horus WLAN location determination system[C]∥3rd International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, 2005: 205-218.
9 Matic A , Papliatseyeu A , Osmani V , et al . Tuning to your position: FM radio based indoor localization with spontaneous recalibration[C]∥2010 IEEE International Conference on Pervasive Computing and Communications, Mannheim, Germany, 2010: 153-161.
10 Ishida S , Izumi K , Tagashira S , et al . WiFi AP-RSS monitoring using sensor nodes toward anchor-free sensor localization[C]∥2015 IEEE 82nd Vehicular Technology Conference, Boston, MA, USA, 2015: 1-5.
11 Chen Qiu-xia , Ding Dong-dong , Zheng Yue . Indoor pedestrian tracking with sparse RSS fingerprints[J]. Tsinghua Science and Technology, 2018, 23(1): 95-103.
12 Chen F , Au W S A , Tan Z H , et al . Received-sigal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983-1993.
13 Brownell P , Farley R D .Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus Mesaensis [J]. Journal of Comparative Physiology A, 1979, 131(1): 23-30.
14 Brownell P H , van Hemmen J L . Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions[J]. Integrative and Comparative Biology, 2001, 41(5): 1229-1240.
15 王柯,刘富,康冰,等 .基于沙蝎定位猎物的仿生震源定位方法[J].吉林大学学报:工学版, 2018, 48(2): 633-639.
15 Wang Ke , Liu Fu , Kang Bing , et al . Bionic hypocenter localization method inspired by sand scorpion in locating preys[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(2): 633-639.
16 Stürzl W , Kempter R , van Hemmen J L . Theory of arachnid prey localization[J]. The American Physical Society, 2000, 84(24): 5668-5671.
17 Kim D E . Neural network mechanism for the orientation behavior of sand scorpions towards prey[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 1070-1076.
18 Seydnejad S R . Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals[J]. Biological Cybernetics, 2016, 110(1): 3-15.
[1] 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J]. 吉林大学学报(工学版), 2019, 49(6): 2089-2097.
[2] 于晓辉,张志成,李新波,孙晓东. 基于状态空间模型的指数衰减正弦信号参数估计[J]. 吉林大学学报(工学版), 2019, 49(6): 2083-2088.
[3] 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715-1725.
[4] 郭继昌,吴洁,郭春乐,朱明辉. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报(工学版), 2019, 49(5): 1726-1734.
[5] 曹运合,曾丽,王宇. 基于特征空间的子阵级自适应和差波束测角方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1735-1744.
[6] 董超,刘晶红,徐芳,王仁浩. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1369-1376.
[7] 王柯俨,胡妍,王怀,李云松. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1377-1384.
[8] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[9] 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999.
[10] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[11] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[12] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[13] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[14] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[15] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[2] 杜忠泽,黄俊霞,符寒光,王经涛,赵西成. 65Mn钢大塑性变形后的组织与力学性能[J]. 吉林大学学报(工学版), 2006, 36(02): 143 -0147 .
[3] 郁发新,郑阳明,谢长雄,金佳军,金仲和 . 基于磁强计的皮卫星姿态角测量误差[J]. 吉林大学学报(工学版), 2007, 37(06): 1460 -1464 .
[4] 臧传义,马红安,田宇,肖宏宇,贾晓鹏. 利用不同籽晶面生长优质宝石级金刚石单晶[J]. 吉林大学学报(工学版), 2006, 36(01): 10 -0013 .
[5] 裴士辉,赵宏伟 . 基于RSA的三次传递不可否认签名方案[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 134 -138 .
[6] 姚智胜,邵春福,熊志华,岳昊 . 基于主成分分析和支持向量机的道路网短时交通流量预测 [J]. 吉林大学学报(工学版), 2008, 38(01): 48 -52 .
[7] 孙志军, 李志军, 洪伟, 刘书亮. 稀、浓燃状态运行时间对装有吸附还原催化转化器的稀燃汽油机NOx排放的影响[J]. 吉林大学学报(工学版), 2005, 35(04): 373 -376 .
[8] 王丽娅,孟广伟,陈介中. 激励下的线性结构系统局部刚度参数识别[J]. 吉林大学学报(工学版), 2006, 36(01): 1 -0004 .
[9] 魏丽英,吕凯 . 信号交叉口处自行车交通流的跟驰行为[J]. 吉林大学学报(工学版), 2008, 38(01): 53 -56 .
[10] 张明君,, 张化光. 基于遗传算法优化的神经网络PID控制器[J]. 吉林大学学报(工学版), 2005, 35(01): 91 -0096 .