吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 66-76.doi: 10.13229/j.cnki.jdxbgxb20180835

• 车辆工程·机械工程 • 上一篇    下一篇

刚性折纸机构运动分析及折叠过程仿真

郭震(),于红英(),滑忠鑫,赵娣   

  1. 哈尔滨工业大学 机电工程学院,哈尔滨 150001
  • 收稿日期:2018-08-13 出版日期:2020-01-01 发布日期:2020-02-06
  • 通讯作者: 于红英 E-mail:guozhen.vip@foxmail.com;mcadyhy@hit.edu.cn
  • 作者简介:郭震(1991-),男,博士研究生. 研究方向:机构学. E-mail:guozhen.vip@foxmail.com
  • 基金资助:
    国家留学基金委项目

Kinematic analysis and simulation of folding process for rigid origami mechanisms

Zhen GUO(),Hong-ying YU(),Zhong-xin HUA,Di ZHAO   

  1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2018-08-13 Online:2020-01-01 Published:2020-02-06
  • Contact: Hong-ying YU E-mail:guozhen.vip@foxmail.com;mcadyhy@hit.edu.cn

摘要:

为了分析刚性折纸机构的运动特性,研究了不同构型的折叠过程,建立了刚性折纸机构运动学模型并分析了典型构型的折叠构态。首先,建立单顶点刚性折纸机构各折痕转角之间的关系方程,推导出未知折痕转角的显式表达式,并通过方程解的互验排除干扰解,得到任意折叠构态实际折痕转角;其次,通过旋转变换矩阵,计算任意折叠构态下顶点实时位置坐标;再次,将三角面片对相交判断算法应用到刚性折纸机构干涉判断上,检测折叠过程中的干涉情况;最后,建立折叠过程仿真平台,并分析典型刚性折纸机构的折叠过程。仿真分析结果与实际折叠过程一致,验证了刚性折纸机构运动分析方法的正确性以及仿真平台的适用性。

关键词: 机械设计及理论, 刚性折纸机构, 运动分析, 干涉判断, 折叠过程仿真

Abstract:

In order to analyze the kinematic characteristics of rigid origami mechanism and study the folding process of different patterns, the kinematic model of rigid origami mechanisms is established and the folding state of typical pattern is analyzed. Firstly, the relation equation between the rotation angle of creases at a single vertex is established, the explicit expression of the unknown angle of creases is derived, and the interference solution is eliminated through the mutual test of equation solutions to obtain the actual rotation angle of the arbitrary folding state. Secondly, using the rotation transformation matrix, the real time coordinates of the vertex are calculated. Thirdly, the intersection test algorithm of triangular facets is applied to judge interference of rigid origami mechanism, and the interference in the folding process is detected. Finally, the folding process simulation platform is established, and the folding process of typical rigid origami mechanism is analyzed. The simulation results coincide with the actual folding process, which verifies the correctness of the kinematic analysis method of rigid origami mechanisms and the applicability of the simulation platform.

Key words: mechanical design and theory, rigid origami mechanism, kinematic analysis, interference judgment, simulation of folding process

中图分类号: 

  • TH112

图1

单顶点构型及其折叠构态"

图2

坐标变换过程"

图3

两种折叠构态"

图4

折痕转角关系方程组求解流程"

图5

旋转变换过程"

图6

点p0绕多个轴转动变换到点p0'"

图7

点与三角面片的位置关系"

图8

中心为正方形的flasher构型"

图9

各折痕转角关系"

图10

仿真分析的整体流程"

图11

各构型及其折叠构态"

表1

各构型仿真分析运行时间"

构型交点数自由度60个中间构态运行时间/s45个中间构态运行时间/s
flasher(中心为等边三角形)331.418 2601.122 093
flasher(中心为正方形)442.366 6391.899 969
三浦折叠412.527 5171.962 476
waterbomb181722.896 67917.315 526
1 Chen Y, Rui P, Zhong You. Origami of thick panels[J]. Science, 2015, 349(6246): 396-400.
2 Chen Y, Fan L Z, Feng J. Kinematic of symmetric deployable scissor-hinge structures with integral mechanism mode[J]. Computers and Structures, 2017, 191: 140-152.
3 Wei G W, Chen Y, Jian S. Dai. Synthesis, mobility, and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion[J]. Journal of Mechanical Design-Transactions of the ASME, 2014, 136(9): 91003-91015.
4 Tachi T. Rigid origami mechanisms[J]. Journal of the Robotics Society of Japan, 2016, 34(3): 184-191.
5 Zachary A, Jason C, Erik D D, et al. Rigid origami vertices: conditions and forcing sets[J]. Journal of Coumputational Geometry, 2016, 7(1): 229-237.
6 Balkcom D J, Mason M T. Robotic origami folding[J]. International Journal of Robotics Research, 2008, 27(5): 613-627.
7 Tomohiro Tachi. Simulation of rigid origami[C]∥Origami 4: Proceedings the 4th International Meeting of Origami Mathematics, Science, and Education. Natick, Massachusetts: A K Peters, 2009.
8 An B, Benbernou N, Demaine E D, et al. Planning to fold multiple objects from a single self-folding sheet[J]. Robotica, 2011, 29(1): 87-102.
9 Wu W N, Zhong Y. A solution for folding rigid tall shopping bags[J]. Proceedings Mathematical Physical and Engineering Sciences, 2011, 467(2133): 2561-2574.
10 Chen Y, Feng J. Improved symmetry method for the mobility of regular structures using graph products[J]. Journal of Structural Engineering, 2016, 142(9): 51-65.
11 Chen Y, Feng J, Liu Y Q. A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures[J]. Mechanism and Machine Theory, 2016, 105: 91-107.
12 Chen Y, Feng J. Folding of a Type of deployable origami structures[J]. International Journal of Structural Stability and Dynamics, 2012, 12(6): 193-202.
13 Xi Z H, Lien J M. Plan folding Motion for rigid origami via discrete domain sampling[C]∥IEEE International Conference on Robotics and Automation, Seattle, Washington, 2015: 2938-2943.
14 Liu S C, Lv W L, Chen Y, et al. Deployable prismatic structures with rigid origami patterns[J]. Journal of Mechanisms and Robotics, 2015, 8(3): No.031002.
15 Cai J G, Zhang Y T, Xu Y X, et al. The Foldability of cylindrical foldable structures based on rigid origami[J]. Journal of Mechanical Design, 2016, 138(3): No.031401.
16 Peraza H E A, Hartl D J, Akleman E, et al. Modeling and analysis of origami structures with smooth folds[J]. Computer-Aided Design, 2016, 78: 93-106.
17 Yu H Y, Guo Z, Wang J R. A method of calculating the degree of freedom of foldable plate rigid origami with adjacency matrix[J]. Advances in Mechanical Engineering, 2018, 10(6): 969-989.
18 Tomas Möller. Fast triangle-triangle intersection test[M]. Wellesley:A K Peters, 1997.
19 Tropp O, Tal A, Shimshoni I. A fast triangle to triangle intersection test for collision detection[J]. Computer Animation and Virtual Worlds, 2006, 17(5): 527-535.
20 于海燕,何援军. 空间两三角形的相交问题[J]. 图学学报, 2013, 34(4): 54-62.
Yu Hai-yan, He Yuan-jun. Testing the intersection status of two triangles[J]. Journal of Graphics, 2013, 34(4): 54-62.
21 关立文,戴玉喜,王立平. 空间三角面片对相交判断算法[J]. 清华大学学报:自然科学版, 2017,57(9): 970-974.
Guan Li-wen, Dai Yu-xi, Wang Li-ping. Intersection test algorithm for spacial triangular facets[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(9): 970-974.
[1] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[2] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!