吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 472-482.doi: 10.13229/j.cnki.jdxbgxb20181071

• 车辆工程·机械工程 • 上一篇    

气动柔性六足机器人定半径转弯实现方法与稳定性

赵云伟1(),耿德旭2(),刘晓敏1,刘齐2   

  1. 1.北华大学 工程训练中心,吉林省 吉林市 132021
    2.北华大学 机械工程学院,吉林省 吉林市 132021
  • 收稿日期:2018-10-25 出版日期:2020-03-01 发布日期:2020-03-08
  • 通讯作者: 耿德旭 E-mail:jluzyw@163.com;gengdx64@163.com
  • 作者简介:赵云伟(1978-),男,副教授,博士.研究方向:柔性关节及机器人技术,智能精密制造.E-mail:jluzyw@163.com
  • 基金资助:
    国家自然科学基金项目(51275004);吉林省自然科学基金项目(20150101026JC);吉林省重点科技研发项目(20180201050GX)

Implementation and stability on turning with constant radius of pneumatic flexible hexapod robot

Yun-wei ZHAO1(),De-xu GENG2(),Xiao-min LIU1,Qi LIU2   

  1. 1.Engineering Training Center, Beihua University, Jilin 132021, China
    2.College of Mechanical Engineering, Beihua University, Jilin 132021, China
  • Received:2018-10-25 Online:2020-03-01 Published:2020-03-08
  • Contact: De-xu GENG E-mail:jluzyw@163.com;gengdx64@163.com

摘要:

针对气动柔性关节仿生六足机器人提出基于三角步态和重心轨迹跟踪法的定半径转弯步态规划方法。采用预设机器人步态转角和转弯半径逆向建立转动过程中机器人重心轨迹模型,获得机器人足部的落足点位置,并进行了机器人重心轨迹仿真,研究了重心规划轨迹与理想轨迹的偏离误差。根据静态稳定裕度模型建立了最大步态转角模型,并以此作为判据分析机器人定半径转弯步态规划的稳定性。利用三维运动捕捉系统进行了机器人定点和定半径转弯性能实验,获得了不同步态转角和转弯半径下机器人的转弯性能,验证了转弯步态规划方法的正确性。该机器人动作灵活,可实现任意半径转弯,当规划步态转角小于最大步态转角时机器人转弯过程行进平稳。

关键词: 机械制造自动化, 六足机器人, 柔性关节, 气压驱动, 定半径转弯

Abstract:

According to the structures and functions of the hexapod robot, this paper explores a method to complete turning with constant radius based on the triangle gait and center of gravity trajectory tracking. The gravity trajectory model of hexapod robot in the rotation process is reversely established with predefined rotation angle and turning radius by tracking the center of gravity of the robot. Then the gravity trajectories of the hexapod robot are simulated and the deviation errors between the ideal trajectories and planed trajectories of the center of gravity are investigated. Also, the maximum gait rotation angle model is established according to the static stability margin model. The experiments on turning performance with fixed point or constant radius of the hexapod robot are performed and the turning performance of hexapod robot is studied with different gait rotation angle and turning radius by analyzing the work space of foot of robot. The simulation and experiment results prove the reasonability and validity of turning gait planning method. The hexapod robot is flexible to turn at any radius and it moves more smoothly and steadily when the planning gait angle is smaller than the maximum gait angle.

Key words: mechanical manufacturing and automation, hexapod robot, flexible joint, pneumatic drive, turning with constant radius

中图分类号: 

  • TH138.5

图1

气动仿生六足机器人结构"

图2

机器人结构简图"

图3

机器人定半径转弯步态规划原理"

图4

机器人定半径转弯步态规划图"

图5

机器人定半径转弯几何关系"

图6

重心投影与支撑多边形位置关系"

图7

机器人运动学实验平台"

表1

实验条件"

实验条件
系统采样频率/Hz800
压强/MPa0.15、0.25、0.35
机器人步频/Hz1
负载/g500

图8

机器人控制原理图"

图9

转弯过程中机器人时序实验照片"

表2

定点转弯气压数据表 (MPa)"

γ/(°)
足2足4足6
456101112161718
50.350.050.000.100.300.150.050.100.30
100.250.300.000.100.250.150.100.150.25
150.350.250.050.150.300.250.050.150.35

表3

定半径转弯气压数据表 (MPa)"

r/mm
足2足4足6
456101112161718
500.100.100.100.000.250.150.160.180.25
1000.050.100.150.060.240.160.150.180.27
2000.000.180.200.050.220.200.100.180.30

表4

定点转弯时实际步态转角和偏心距"

项目规划步态转角/(°)
51015
γ/(°)3.606.7013.90
L/mm4.656.428.74

表5

定半径转弯时实际步态转角和偏心距"

项目转弯半径/mm
50100200
γ/(°)3.904.102.80
L/mm3.553.8310.33

图10

定点转弯重心轨迹仿真"

图11

定半径转弯重心规划轨迹与理想轨迹偏差"

图12

机器人定点转弯重心位移变化"

图13

机器人定半径转弯重心位移变化"

图14

机器人最大步态转角"

图15

定半径转弯过程中步态转角变化"

1 Zhang H, Liu Y, Zhao J, et al. Development of a bionic hexapod robot for walking on unstructured terrain[J]. Journal of Bionic Engineering, 2014, 11(2): 176-187.
2 Bartsch S, Birnschein T, Römmermann M, et al. Development of the six-legged walking and climbing robot SpaceClimber[J]. Journal of Field Robotics, 2012, 29(3): 506-532.
3 Kondo N, Yata K, Iida M, et al. Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture Environment & Food, 2010, 3(1): 20-24.
4 荣誉, 金振林, 崔冰艳. 六足农业机器人并联腿构型分析与结构参数设计[J]. 农业工程学报, 2012, 28(15): 9-14.
Rong Yu, Jin Zhen-lin, Cui Bing-yan. Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanisms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15): 9-14.
5 Bodrov A, Cheah W, Green P N, et al. Joint space reference trajectory to reduce the energy consumption of a six-legged mobile robot[C]∥2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), IEEE, Moscow, 2018: 1-6.
6 Bjelonic M, Kottege N, Homberger T, et al. Weaver: hexapod robot for autonomous navigation on unstructured terrain[J]. Journal of Field Robotics, 2018, 35(7): 1063-1079.
7 刘逸群, 邓宗全, 赵亮, 等. 液压驱动六足机器人步行腿性能[J]. 吉林大学学报: 工学版, 2015, 45(5): 1512-1518.
Liu Yi-qun, Deng Zong-quan, Zhao Liang,et al. Performance of walking leg of a hydraulically actuated hexapod robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1512-1518.
8 Wang Z, Ding X, Rovetta A, et al. Mobility analysis of the typical gait of a radial symmetrical six-legged robot[J]. Mechatronics, 2011, 21(7): 1133-1146.
9 Deng H, Xin G, Zhong G, et al. Object carrying of hexapod robots with integrated mechanism of leg and arm[J]. Robotics and Computer-Integrated Manufacturing, 2018(54): 145-155.
10 陈甫, 臧希喆, 闫继宏, 等. 适合航行的六足仿生机器人Spider的研制[J]. 吉林大学学报: 工学版, 2011, 41(3): 765-770.
Chen Fu, Zang Xi-zhe, Yan Ji-hong, et al. Development of navigable hexapod biomimetic robot Spider[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 765-770.
11 Erden M S, Leblebicio, Lu K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics & Autonomous Systems, 2008, 56(3): 199-212.
12 Roy S S, Pratihar D K. Effects of turning gait parameters on energy consumption and stability of a six-legged walking robot[J]. Robotics & Autonomous Systems, 2012, 60(1): 72-82.
13 Roy S S, Pratihar D K. Soft computing-based expert systems to predict energy consumption and stability margin in turning gaits of six-legged robots[J]. Expert Systems with Applications, 2012, 39(5): 5460-5469.
14 Agheli M, Qu L, Nestinger S S. SHeRo: scalable hexapod robot for maintenance, repair, and operations[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 478-488.
15 Belter D, Wietrzykowski J, Skrzypczyński P. Employing natural terrain semantics in motion planning for a multi-legged robot[J]. Journal of Intelligent & Robotic Systems, 2019, 93(3/4): 723-743.
16 Belter D, Nowicki M R. Optimization-based legged odometry and sensor fusion for legged robot continuous localization[J]. Robotics and Autonomous Systems, 2019, 111: 110-124.
17 Buchanan R, Bandyopadhyay T, Bjelonic M, et al. Walking posture adaptation for legged robot navigation in confined spaces[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 2148-2155.
18 姜树海, 孙培, 唐晶晶, 等. 仿生甲虫六足机器人结构设计与步态分析[J]. 南京林业大学学报: 自然科学版, 2012, 36(6): 115-120.
Jiang Shu-hai, Sun Pei, Tang Jing-jing, et al. Structural design and gait analysis of hexapod bionic robot[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(6): 115-120.
19 陈刚, 金波, 陈鹰. 六足步行机器人定半径转弯步态[J]. 浙江大学学报: 工学版, 2014, 48(7): 1278-1286.
Chen Gang, Jin Bo, Chen Ying. Turning gait with constant radius of six-legged waling robot[J]. Joural of Zhejiang University (Engineering Science), 2014, 48(7): 1278-1286.
20 李满宏, 张建华, 张小俊, 等. 基于马尔可夫决策过程的六足机器人自由步态规划[J]. 机器人, 2015, 37(5): 529-537.
Li Man-hong, Zhang Jian-hua, Zhang Xiao-jun, et al. Free gait planning for a hexapod robot based on markov decision process[J]. Robot, 2015, 37(5): 529-537.
21 邓宗全, 刘逸群, 高海波, 等. 液压驱动六足机器人步行腿节段长度比例研究[J]. 机器人, 2014, 36(5): 544-551.
Deng Zong-quan, Liu Yi-qun, Gao Hai-bo, et al. On the segment length ratio of the walking leg of a hydraulically actuated hexapod robot[J]. Robot, 2014, 36(5): 544-551.
22 赵云伟, 耿德旭, 刘晓敏, 等. 三自由度气动柔性驱动器结构功能与形变特性研究[J]. 农业机械学报, 2017, 48(9): 392-401.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Structure and deformation characteristics of 3-DOF pneumatic flexible actuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 392-401.
23 赵云伟, 耿德旭, 刘晓敏, 等. 气动柔性关节仿生六足机器人步态规划与运动性能研究[J]. 农业机械学报, 2018, 49(2): 385-394, 418.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Gait planning and kinematics of bionic hexapod robot based on pneumatic flexible join[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 385-394, 418.
24 赵云伟, 耿德旭, 刘晓敏, 等. 气动空间弯曲关节动力学性能实验研究[J]. 机床与液压, 2017, 45(23): 10-23.
Zhao Yun-wei, Geng De-xu, Liu Xiao-min, et al. Experimental study on dynamic properties of pneumatic space bending joint[J]. Machine Tool & Hydraulics, 2017, 45(23): 10-23.
25 Estremera J, Cobano J A. Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones: an application to humanitarian demining[J]. Robotics and Autonomous Systems, 2010, 58(5): 700-711.
[1] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[2] 任书楠, 杨向东, 王国磊, 刘志, 陈恳. 大部件喷涂中的移动机械臂站位规划[J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[3] 沈志煌, 姚斌, 陆如升, 冯伟, 张祥雷, 王萌萌. 精密螺杆转子齿廓成形磨削的误差分析[J]. 吉林大学学报(工学版), 2016, 46(3): 831-838.
[4] 王延忠, 侯良威, 吕庆军, 赵兴福, 吴灿辉. 基于总线控制的面齿轮复杂曲面加工技术[J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[5] 陈健, 葛连正, 李瑞峰. 考虑摩擦特性的机器人柔性关节鲁棒控制器设计[J]. 吉林大学学报(工学版), 2015, 45(6): 1906-1912.
[6] 刘逸群, 邓宗全, 赵亮, 丁亮, 佟志忠, 高海波. 液压驱动六足机器人步行腿性能[J]. 吉林大学学报(工学版), 2015, 45(5): 1512-1518.
[7] 郭黎滨, 张彬, 崔海, 张志航. 微细电火花线切割表面三维粗糙度的结构性参数[J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[8] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[9] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[10] 佟金, 王亚辉, 卢纪生, 张书军, 陈东辉. 基于CCD的大型台阶轴锻件同轴度测量[J]. 吉林大学学报(工学版), 2013, 43(04): 945-950.
[11] 张雷, 赵云伟, 杨卓, 赵继. 电流变抛光液剪切屈服特性[J]. , 2012, 42(05): 1145-1150.
[12] 王国富, 高峰, 徐国艳. 转向盘式全方位六足机器人运动分析及控制[J]. , 2012, 42(04): 1008-1014.
[13] 史永杰, 郑堤, 胡利永, 王龙山. 非球面件数控研抛力、研抛工具位置和姿态解耦技术[J]. 吉林大学学报(工学版), 2012, 42(01): 116-121.
[14] 张英芝1,郑锐2,申桂香1,王志琼1,李怀洋1,郑珊1. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报(工学版), 2011, 41(6): 1636-1640.
[15] 陈甫,臧希喆,闫继宏,赵杰. 适合航行的六足仿生机器人Spider的研制[J]. 吉林大学学报(工学版), 2011, 41(03): 765-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!