吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 621-630.doi: 10.13229/j.cnki.jdxbgxb20181130
• 交通运输工程·土木工程 • 上一篇
Yang LI1,2(),Lian-jun WANG1,2()
摘要:
为评价二维建模方法在高速铁路站场宽路基复合地基中的适用性,以京沪高铁济南西站站场路基为例,根据5种方法建立相应二维模型分析复合地基受力及变形特征,并与三维模型计算结果及实测结果进行对比。研究表明:在分析地基沉降、桩土应力和路基坡脚水平位移时,等弹性模量法计算结果精度最高;但在分析地基超静孔隙水压力和边桩弯矩时,所有二维模型结果均不可靠,此时须采用三维模型进行分析。
中图分类号:
1 | 付贵海, 魏丽敏, 邓宗伟, 等. 桩筏复合结构加固高速铁路深厚软基长期性状的现场试验研究[J]. 中南大学学报: 自然科学版, 2017, 48(8): 2195-2202. |
Fu Gui-hai, Wei Li-min, Deng Zong-wei, et al. Field test on long-term behaviors of pile-raft composite structure strengthening high-speed railway deep ground[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2195-2202. | |
2 | 张峰, 刘莹, 许兆义, 等. 武广高铁CFG桩复合地基工后沉降影响因素[J]. 西南交通大学学报, 2015, 50(5): 783-788. |
Zhang Feng, Liu Ying, Xu Zhao-yi, et al. Factors influencing subgrade post-construction settlement of CFG Pile composite foundation in Wuhan-Guangzhou high-speed railway[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 783-788. | |
3 | 沈宇鹏, 毛远凤, 荆鹏, 等. PHC 与CFG 桩复合地基在高速铁路基底中处理效果试验对比[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4174-4180. |
Shen Yu-peng, Mao Yuan-feng, Jing Peng, et al. Experimental effect contrast between PHC and CFG pile-raft composite foundation in high speed railway base treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2): 4174-4180. | |
4 | 邵国霞, 苏谦, 尧俊凯. 加筋垫层与混凝土板加固管桩复合地基现场试验对比研究[C]∥第五届全国土工合成材料加筋土学术研讨会, 成都, 2015: 271-279. |
5 | 郑一峰, 毛健, 梁世忠, 等. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报: 工学版, 2017, 47(4): 1075-1081. |
Zheng Yi-feng, Mao Jian, Liang Shi-zhong, et al. Negative skin friction of pile foundation considering soil consolidation in high fill site[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1075-1081. | |
6 | 古海东, 罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报: 工学版, 2018, 48(6): 1712-1724. |
Gu Hai-dong, Luo Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1712-1724. | |
7 | 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报: 工学版, 2016, 46(2): 445-450. |
Hu Yu-ming, Huang Yin, Gu Hai-dong. Three-dimensional finite element analysis of internal forces and displacement of scattered row piles[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 445-450. | |
8 | Zhang L, Goh S H, Liu H B. Seismic response of pile-raft-clay system subjected to a long-duration earthquake centrifuge test and finite element analysis[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 488-502. |
9 | Paravita S W, Daniel T. Analysis of piled raft foundation on soft soil using PLAXIS 2D[J]. Procedia Engineering, 2015, 125: 363-367. |
10 | Huang J, Han J. Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling[J]. Computers and Geotechnics, 2010, 37(5): 638-648. |
11 | 曹文昭, 郑俊杰, 严勇. 桩承式变刚度加筋垫层复合地基数值模拟[J]. 岩土工程学报, 2017, 39(增刊2): 83-86. |
Cao Wen-zhao, Zheng Jun-jie, Yan Yong. Numerical simulation of composite foundation using pile-supported and geosynthetics-reinforced cushion with variable stiffness[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup.2): 83-86. | |
12 | 李建国,白朝能. 路堤荷载下复合地基下卧层附加应力分布研究[J]. 铁道工程学报, 2017, 34(7): 24-29. |
Li Jian-guo, Bai Chao-neng. Research on the additional stress distribution of underlying stratum under embankment load[J]. Journal of Railway Engineering Society, 2017, 34(7): 24-29. | |
13 | 邓永锋, 洪振舜, 刘松玉, 等. 搅拌桩复合地基平面模拟的简化方法探讨[J]. 岩土力学, 2005, 26(增刊): 209-212. |
Deng Yong-feng, Hong Zhen-shun, Liu Song-yu. et al. A planar simplified method for three-dimension cement-soil mixing piles composite foundation with FEM numerical analysis[J]. Rock and Soil Mechanics, 2005, 26(Sup.): 209-212. | |
14 | Chai J, Shen S, Ding W, et al. Numerical investigation of the failure of a building in Shanghai, China[J]. Computers and Geotechnics, 2014, 55: 482-493. |
15 | Chai J, Shresth S, Hino T, et al. 2D and 3D analyses of an embankment on clay improved by soil–cement columns[J]. Computers and Geotechnics, 2015, 68: 28-37. |
16 | 栾光日, 王连俊, 李懿, 等. 高速铁路站场宽路堤复合地基沉降特性分析[J]. 铁道学报, 2014, 36(10): 95-101. |
Luan Guang-ri, Wang Lian-jun, Li Yi, et al. Research on settlement characteristics of wide embankment composite foundation of high-speed railway stations[J]. Journal of the China Railway Society, 2014, 36(10): 95-101. | |
17 | 国家铁路局. TB 10621—2014. 高速铁路设计规范[M]. 北京: 中国铁道出版社, 2014. |
18 | 闫明礼. CFG桩复合地基技术及工程实践[M]. 2版. 北京: 中国水利水电出版社, 2006. |
[1] | 凌建明,陈卉,钱劲松,周定. 湿度有限波动下非饱和黏土路基动态回弹模量[J]. 吉林大学学报(工学版), 2020, 50(2): 613-620. |
[2] | 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797. |
[3] | 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417. |
[4] | 郑一峰, 毛健, 梁世忠, 郑传峰. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081. |
[5] | 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096. |
|