吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (3): 788-797.doi: 10.13229/j.cnki.jdxbgxb20180285

• • 上一篇    下一篇

深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验

张磊(),刘保国,储昭飞   

  1. 北京交通大学 土木建筑工程学院,北京 100044
  • 收稿日期:2018-03-29 出版日期:2019-05-01 发布日期:2019-07-12
  • 作者简介:张磊(1981?),男,博士研究生.研究方向:岩土工程理论及应用.E?mail:13810174099@163.com
  • 基金资助:
    国家科技支撑计划项目(2013BAB10B06);国家自然科学基金项目(71771020);国家自然科学基金重点项目(71631007)

Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer

Lei ZHANG(),Bao⁃guo LIU,Zhao⁃fei CHU   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-03-29 Online:2019-05-01 Published:2019-07-12

摘要:

针对煤层开采后上覆含水砂岩地层疏干排水导致的地层不均匀沉降对斜井管片结构的影响,采用了相似模型试验手段对斜井穿越粗粒砂岩与砂质泥岩交界区域进行相似模拟试验,通过模型试验模拟不同的地层压力、孔隙压力和排水速率条件下的含水地层沉降变化规律及斜井管片纵向和环向应力应变分布情况,分析得出了斜井管片结构附加应力的分布规律以及影响因素,同时根据模型试验提出了含水地层不均匀沉降引起的管片附加应力和地层围岩压力、孔隙水压力作用对斜井管片结构的影响。

关键词: 土木工程, 隧道工程, 模型试验, 不均匀沉降, 附加应力

Abstract:

To study the influence of uneven settlement on the structure of inclined shaft segment caused by the drainage of overlying water?bearing sandstone after coal mining, a similar simulation test was carried out on the area where inclined shaft crossed the boundary between coarse?grained sandstone and sandy mudstone. The settlement rule of water?bearing sandstone and longitudinal and hoop stress?strain distribution of inclined shaft segment was simulated by model test in different formation pressure, pore pressure and drainage rate. The distribution rule and influencing factors of additional stress in the inclined shaft segment were analysed. At the same time, according to the model test, the influence of additional stress, surrounding rock pressure and pore?water pressure caused by uneven settlement on the inclined shaft segment was put forward.

Key words: civil engineering, tunnelling engineering, model test, uneven settlement, additional stress

中图分类号: 

  • TU452

图1

盾构斜井穿越地层剖面及模拟区域位置"

表1

地层基本力学参数"

介质 ρ/(g·cm-3) E/GPa σ c/MPa n/% k/(cm·s-1 M
A 2.24 13.8 19.7 23.1 6.21×10-5 0.71
B 2.49 28.9 41.5 12.9 1.79×10-7 0.74

图2

粗砂岩相似材料压缩排水变形曲线"

表2

地层相似材料基本力学参数"

介质

ρ/

(g·cm-3

E/MPa σ c/MPa n/% k/(cm·s-3 M
a 1.81 168 0.46 23.3 4.59×10-4 0.72
b 1.76 311 0.92 - - 0.74

图3

盾构斜井模型"

图4

整体试验模型"

图5

模型台架尺寸及传感器布置"

图6

斜井表面应变花布置"

表3

疏干排水试验工况"

试验工况 地层荷载/kPa 孔隙水压/kPa

排水速率/

(L?min—1)

I 100 20 0.1
II 100 20 0.4
III 100 40 0.4

图7

铺设模型"

图8

土压和孔隙水压变化曲线"

图9

3种工况下的地层沉降曲线"

图10

3种工况下斜井各截面轴向应变变化曲线"

图11

斜井纵向应变分布与内力组合图示"

图12

排水前后斜井纵向弯矩和轴力变化曲线"

表4

排水引起斜井纵向内力增量百分比(%)"

内力 工况/截面 1 2 3 4 5
轴力 I 18.3 35.4 32.5 38.8 19
II 16.2 24.7 35.6 40.2 22.2
III 25.5 43.2 44.9 61.1 30.9
弯矩 I 22.1 30.4 42.4 68.9 24.5
II 23.2 36.9 50.5 53 22.9
III 35.2 40.2 74 75.1 33.2

图13

排水前、后斜井各截面上最小主应力分布"

表5

排水引起斜井截面最小主应力增量百分比(%)"

位置 工况 截面
1 2 3 4 5
拱顶 I 23.0 19.9 17.3 30.9 16.9
II 22.2 23.4 21.3 25.9 14.1
III 29.8 35.1 43.3 45.6 18.4
拱腰 I 16.4 17.4 22.3 31.2 20.7
II 17.0 12.6 13.7 33.8 19.9
III 23.4 19.0 27.2 35.1 22.1
拱底 I 26.1 20.7 31.0 27.4 16.1
II 23.1 21.9 19.9 23.7 14.2
III 28.7 39.7 42.4 43.4 24.6
1 Shi X M , Liu B G , Tannant D ,et al . Influence of consolidation settlement on the stability of inclined TBM tunnels in a coal mine[J]. Tunnelling & Underground Space Technology, 2017, 69: 64⁃71.
2 黄家会, 杨维好 . 井壁竖直附加力变化规律模拟试验研究[J]. 岩土工程学报, 2006, 28(10): 1204⁃1207.
Huang Jia⁃hui , Yang Wei⁃hao . Study on variation of vertical additional force on shaft lining by simulation tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1204⁃1207.
3 李文平 . 徐淮矿区深厚表土底含失水压缩变形实验研究[J]. 煤炭学报, 1999, 24(3): 9⁃13.
Li Wen⁃ping . Experimental study of water loss compression deformation at the bottom of deep surface of Xuhuai mining area[J]. Journal of China Coal Society, 1999, 24(3): 9⁃13.
4 李文平 . 深部土层失水变形时土与井壁相互作用试验与理论研究[J]. 岩土工程学报, 2000, 22(4): 475⁃480.
Li Wen⁃ping . Testing and theoretical studies on the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 475⁃480.
5 刘希亮, 罗静 . 深厚表土底部含水层疏水沉降试验及数值模拟研究[J]. 煤炭学报, 2004, 29(2): 172⁃176.
Liu Xi⁃liang , Luo Jing . Experimental and numerical simulation study on the hydrophobic settlement of the aquifer at the bottom of the deep surface[J]. Journal of China Coal Society, 2004, 29(2): 172⁃176.
6 何川 . 盾构/TBM施工煤矿长距离斜井的技术挑战与展望[J]. 隧道建设, 2014, 34(4): 287⁃297.
He Chuan . Challenges and prospectives of construction of long⁃distance inclined shafts of coal mines by shield/ TBM [J]. Tunnel Construction, 2014, 34(4): 287⁃297.
7 侯公羽, 梁荣, 龚砚芬,等 . 煤矿长斜井TBM施工安全风险分析与趋势预测[J]. 岩土力学, 2014(增刊2): 325⁃331.
Hou Gong⁃yu , Liang Rong , Gong Yan⁃fen , et al . Risk analysis and trend prediction of long inclined⁃shaft construction in coalmine by TBM [J]. Rock and Soil Mechanics, 2014(Sup.2): 325⁃331.
8 储昭飞, 刘保国, 张磊,等 . 孔隙砂岩三轴压缩排水试验及地层失水沉降计算[J]. 岩土力学,2017(增刊1): 225⁃232.
Chu Zhao⁃fei , Liu Bao⁃guo , Zhang Lei , et al . Triaxial compression drainage tests on porous sandstones and calculation of dewatering⁃induced settlement of aquifer layer [J]. Rock and Soil Mechanics, 2017(Sup.1): 225⁃232.
9 钱自卫, 曹丽文, 姜振泉,等 . 孔隙砂岩多次化学注浆试验研究[J]. 岩土力学, 2014, 35(8): 2226⁃2240.
Qian Zi⁃wei , Cao Li⁃wen , Jiang Zhen⁃quan , et al . Research on multiple chemical grouting experiment of porous sandstone [J]. Rock and Soil Mechanics, 35(8):2226⁃2240.
10 许江, 杨红伟, 李树春,等 . 循环加、卸载孔隙水压力对砂岩变形特性影响实验研究[J]. 岩石力学与工程学报, 2009, 28(5): 892⁃899.
Xu Jiang , Yang Hong⁃wei , Li Shu⁃chun , et al . Experimental study of effects of cyclic loading and unloading pore water pressures on deformation characteristic of sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 892⁃899.
11 Wong T F , David C , Zhu W . The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B2): 3009⁃3025.
12 李小琴, 李文平 . 深厚表土底含失水变形时土与井壁相互作用弹塑性模型[J]. 岩土工程学报, 2005, 27(3): 329⁃332.
Li Xiao⁃qin , Li Wen⁃ping . Elasto⁃plastic model of the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 329⁃332.
13 史小萌, 刘保国, 李涛,等 . 含水层疏排水沉降引起盾构斜井管片应力变形分析[J]. 岩石力学与工程学报, 2016 (增刊1): 3057⁃3063.
Shi Xiao⁃meng , Liu Bao⁃guo , Li Tao , et al . Stress and deformation analysis of shield incline shafts segment due to dewater settlement of aquifer [J]. Chinese Journal of Rock Mechanics and Engineering, 2016(Sup.1): 3057⁃3063.
14 刘金辉, 李文枭, 刘宇森,等 . 多孔含水岩层的相似材料配比研究[J]. 岩土力学, 2018, 39(2): 657⁃664.
Liu Jin⁃hui , Li Wen⁃xiao , Liu Yu⁃sen , et al . A method for determining the ratio of similar material to simulate porous water⁃bearing stratum [J]. Rock and Soil Mechanics, 2018, 39(2): 657⁃664.
15 王士民, 于清洋, 彭博,等 . 空洞对盾构隧道结构受力与破坏影响模型试验研究[J]. 岩土工程学报, 2017, 39(1): 89⁃98.
Wang Shi⁃min , Yu Qing⁃yang , Peng Bo , et al . Model tests on influences of cavity defects on mechanical characteristics and failure laws of segment linings of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 89⁃98.
16 志波由纪夫,川島一彦 . シ―ルドトソネルの耐震解析に用いる長手方向覆土剛性の評價法[C]//土木学会論文集, 东京,1988 : 319⁃327.
17 志波由纪夫,川島一彦 . 応答変位法によるシ―ルドトソネルの地震时断面力の算定法[C]//土木学会論文集, 东京,1988 : 385⁃394.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[3] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[4] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[5] 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[6] 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[7] 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096.
[8] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[9] 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[10] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[11] 赵玉, 李衍赫, 张培, 赵科, 刘伟超. 粘土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797.
[12] 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[13] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[14] 苏迎社,杨媛媛. 疏排桩支护结构中土拱荷载传递比分析[J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[15] 王甲春, 阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报(工学版), 2014, 44(2): 352-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!