吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1306-1316.doi: 10.13229/j.cnki.jdxbgxb20191055

• 交通运输工程·土木工程 • 上一篇    

热氧老化下废旧叠层轮胎隔震垫恢复力模型

张广泰1(),王明阳1,郭俏君1,章金鹏1,陆东亮2   

  1. 1.新疆大学 建筑工程学院,乌鲁木齐 830047
    2.乌兰察布电力勘测设计院有限公司,内蒙古 乌兰察布 012000
  • 收稿日期:2019-08-26 出版日期:2021-07-01 发布日期:2021-07-14
  • 作者简介:张广泰(1963-),男,教授,博士生导师.研究方向:新材料和减隔震.E-mail:zgtlxh@126.com
  • 基金资助:
    国家自然科学基金项目(51568064);新疆维吾尔自治区教育厅自然科学重点项目(XJEDU2020I005)

Scarp tire rubber pads′s practical restoring force model under the effect of thermal oxidation aging

Guang-tai ZHANG1(),Ming-yang WANG1,Qiao-jun GUO1,Jin-peng ZHANG1,Dong-liang LU2   

  1. 1.School of Architecture and Engineering,Xinjiang University,Urumqi 830047,China
    2.Wulanchabu Electric Power Survey and Design Institute Co. ,Ltd. ,Wulanchabu 012000,China
  • Received:2019-08-26 Online:2021-07-01 Published:2021-07-14

摘要:

为研究热氧老化作用下废旧叠层轮胎隔震垫(STP)的恢复力模型,对不同老化时间下的STP进行低周往复加载试验,分析STP的滞回耗能特性。基于双弹簧模型,同时结合STP拟静力试验结果,提出了适用于叠层轮胎隔震垫恢复力模型,建立了不同老化时间和设计压应力下叠层轮胎隔震垫的双弹簧恢复力模型。通过MATLAB模拟滞回性能与试验滞回性能对比,验证了该模型可以很好地反映STP的耗能性能。结果表明:随着老化时间的增加,STP的水平等效刚度、单位循环耗能面积和等效阻尼比均先增加后减小,在实际老化50 a时三者达到最大,满足村镇建筑50 a内的隔震耗能;建立的热氧老化条件下的恢复力模型能够较好地模拟STP在不同老化时间、不同设计压应力下的滞回特性,可为STP在隔震建筑中的应用提供理论参考。

关键词: 热氧老化, 废旧叠层轮胎隔震垫, 双弹簧恢复力模型, 设计压应力

Abstract:

In order to study the restoring force model of Scarp Tire Rubber Pads (STPs) under the thermal oxidation aging, cyclic loading tests with different aging time were performed and the hysteretic dissipated energy characteristics of STPs were analyzed. Based on the double spring model, and combined with the results of STP pseudo-static test, this paper presented a restoring force model for STPs and established a two-spring restoring force model for STPs with different aging time and design compressive stress. By comparison of MATLAB simulation of hysteretic performance and experimental hysteretic performance, it is verified that the model could well reflect the energy dissipation performance of STPs. The results show that, with the increase of aging time, the horizontal equivalent stiffness, unit cycle energy dissipation area and equivalent damping ratio of STPs all increase first and then decrease, reaching the maximum in actual aging of 50 a, which can meet the isolation energy consumption of rural buildings within 50 a. The establish restoring force model under the condition of hot oxygen aging can better simulate the hysteretic characteristics of STPs under different aging time and different design compressive stress, which can provide theoretical reference for the application of STPs in isolated buildings.

Key words: thermo-oxidative aging, scarp tire rubber pads, double spring restoring force model, design compressive stress

中图分类号: 

  • TU352.12

图1

STP实物图"

图2

STP的连接方式"

图3

加载装置中STP布设图"

图4

加载装置试验图"

图5

位移-时间加载曲线"

表1

STP老化试验内容"

试件编号

温度

/℃

试验时间

/h

相当条件

试件

个数

STP?25?X1007720 ℃×25 a15
STP?50?X10015420 ℃×50 a15
STP?75?X10023120 ℃×75 a15
STP?100?X10030820 ℃×100 a15

图6

试验和模拟滞回曲线(β=0.7,γ=0.3)"

图7

STP骨架曲线"

图8

双弹簧模型简图"

表2

STP的特征参数"

老化时间/hP=4 MPaP=5 MPaP=6 MPa
FY/kNY/mm?FY/kNY/mm?FY /kNY/mm?
011.820.40.88337.425.00.91944.229.91.020
7730.912.60.93747.028.80.60786.940.20.759
15434.75.00.97656.437.61.030173.066.60.897
23137.811.60.88025.223.10.66798.142.10.735
30838.17.00.9146.014.30.77856.330.01.030

图9

MATLAB建模流程图"

表3

STP水平等效刚度试验结果与模拟结果的比较(β=0.7,γ=0.3)"

P/

MPa

t/a±15 mm±30 mm±45 mm±60 mm
D/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/K
402.842.95-0.042.612.82-0.071.921.95-0.021.511.54-0.02
253.033.13-0.032.883.18-0.092.102.31-0.091.601.67-0.04
503.113.27-0.052.932.540.152.222.000.111.671.640.02
752.953.15-0.062.742.95-0.071.922.07-0.771.831.610.13
1002.923.20-0.082.532.74-0.081.831.95-0.061.471.48-0.01
503.243.36-0.042.743.06-0.102.032.19-0.071.501.55-0.03
253.563.90-0.092.952.730.082.272.200.031.621.75-0.07
503.653.62-0.013.162.870.102.372.180.091.811.750.03
753.473.64-0.053.103.32-0.072.332.370.021.691.860.09
1003.333.80-0.122.873.30-0.132.492.52-0.011.581.720.08
603.483.87-0.103.133.61-0.132.782.92-0.052.252.55-0.12
253.663.320.103.283.110.052.893.14-0.082.432.400.01
503.783.540.073.473.310.053.102.750.132.612.350.11
753.593.77-0.053.213.61-0.113.012.920.032.312.38-0.03
1003.203.55-0.103.102.870.082.752.380.152.222.39-0.07

表4

STP单位循环耗能试验结果与模拟结果的比较(β=0.7,γ=0.3)"

P/MPat/a±15 mm±30 mm±45 mm±60 mm
D/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/KD/(kN·mm-1K/(kN·mm-1D-K)/K
40263282-0.0713311440-0.0834953556-0.0259616064-0.02
25311327-0.0515361613-0.0538804104-0.0566796975-0.04
50419458-0.0815741720-0.0936914051-0.0961746996-0.12
75375404-0.0719912147-0.0743794737-0.0870417647-0.08
100322349-0.0814761603-0.0838034137-0.0865637170-0.08
503022770.0915651617-0.0338674091-0.0569557049-0.01
25281307-0.0810241119-0.0925692705-0.0552235647-0.08
50300307-0.02142014000.0134683522-0.0261086375-0.04
753272920.1215551640-0.0538773939-0.0268517396-0.07
100295303-0.0313911428-0.0336583684-0.0167927175-0.05
60337345-0.0213341365-0.0232303280-0.0260016263-0.04
25318345-0.0815341666-0.0841324493-0.0874838175-0.08
503843660.05147314050.05379337540.0168887276-0.05
753503240.08153414210.08397337440.0676378003-0.05
1003652580.02159511300.12415230440.0878368398-0.07

表5

STP等效阻尼比试验结果与模拟结果的比较(β=0.7,γ=0.3)"

P/MPat/a±15 mm±30 mm±45 mm±60 mm
D /%K/%D-K)/K/%D/%K /%D-K)/K/%D /%K /%D-K)/K/%D /%K /%D-K)/K/%
406.786.80-0.299.029.010.1114.014.30-2.1017.4017.400.00
257.157.17-0.288.978.960.1114.314.002.1418.5018.500.00
508.368.37-0.1212.0012.000.0015.915.900.0018.6018.90-1.59
759.089.10-0.2212.9012.900.0017.918.00-0.5621.1021.000.48
1007.717.72-0.1310.3010.300.0016.716.70-0.0020.0021.40-6.54
506.596.84-3.657.518.32-9.7412.914.70-12.2018.3020.00-8.50
257.257.52-3.598.978.248.8612.711.609.4816.1014.3012.58
508.308.35-0.609.378.638.5714.713.707.3017.9016.107.53
758.707.8410.979.358.746.9813.113.100.0020.0018.600.61
1007.647.67-0.397.677.403.6411.911.503.4816.6016.500.00
606.306.35-0.796.326.68-5.398.248.81-6.4710.8310.830.00
257.347.340.007.187.170.1410.811.20-3.5713.6515.02-9.12
508.278.35-0.097.337.51-2.4011.210.704.6715.0414.652.66
757.518.31-9.636.956.950.0010.110.100.0014.0113.990.14
1007.167.18-0.286.956.950.0010.0710.070.0013.8013.81-0.07

表6

水平等效刚度试验结果和理论计算结果的均值和标准差(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/(kN·mm-1试验3.322.982.341.872.502.692.822.682.482.332.563.01
模拟3.483.092.391.952.702.752.652.802.702.412.693.05
标准差/(kN·mm-1试验0.300.260.430.380.660.690.690.650.640.570.730.48
模拟0.290.320.380.410.760.680.690.730.700.660.760.50

表7

单位循环耗能试验结果和理论计算结果的均值和标准差(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/kN·mm)试验329.91489.03731.16679.52886.82914.32974.33324.03187.33063.22891.53217.3
模拟329.71514.33789.47107.42969.13123.03135.83474.53223.33289.03013.83252.8
标准差/kN·mm)试验42.3201.1432.6701.22480.32535.92408.62719.22709.72418.32418.62703.5
模拟51.8251.1829.4780.12465.72724.12607.02923.22936.72604.12547.42908.6

表8

等效阻尼比试验结果和理论计算结果的均值和标准差(β=0.7,γ=0.3)"

统计量位移幅值/mm老化时间/h竖向荷载/MPa
±15±30±45±60077154231308456
均值/%试验7.68.712.816.59.811.112.312.611.413.311.49.5
模拟7.58.612.616.310.210.811.712.311.413.410.99.5
标准差/%试验0.801.892.802.913.683.904.044.884.454.714.012.85
模拟0.831.872.712.893.883.863.844.594.724.833.642.81
1 Ahmet T, Bayezid Ö. Seismic base isolation using low-cost scrap tire pads (STP)[J]. Materials and Structures, 2008, 41(5):891-908.
2 张广泰,陆东亮,魏飞来,等.热氧老化条件下废旧叠层轮胎隔震垫的力学性能[J].华南理工大学学报:自然科学版,2019,47(8):16-22.
Zhang Guang-tai,Lu Dong-liang,Wei Fei-lai,et al.Mechanial properties of scarp tire rubber pads based on thermal oxygen aging[J].Journal of South China University of Techology(Nature Science Edition),2019,47(8):16-22.
3 孟庆利,冯浩.铅芯废旧轮胎隔震垫(LRTP)力学性能试验研究[J].土木工程学报,2018,51(1):58-67.
Meng Qing-li,Feng Hao. The experimental study on mechnical behavior of Lead Recycle Tire Pads (LRTP)[J]. China Civil Engineering Journal, 2018,51(1):58-67.
4 张广泰,陆东亮,章金鹏,等.老化-荷载耦合下叠层轮胎隔震垫的竖向力学性能[J].材料导报,2019(18):3140-3146.
Zhang Guang-tai,Lu Dong-liang,Zhang Jin-peng,et al.Vertical mechanical properties of scrap tire rubber pads under aging-loading[J]. Materials Reports,2019(18): 3140-3146.
5 熊世树,周正华,王补林.铅芯橡胶隔震支座恢复力模型的分析方法[J].华中科技大学学报:城市科学版,2003(2):28-31.
Xiong Shi-shu,Zhou Zheng-hua,Wang Bu-lin. Analysis of hysteresis model of lead-rubber laminated bearing[J]. Journal of Wuhan Urban Construction Institute, 2003(2):28-31.
6 金建敏,周福霖,谭平.铅芯橡胶支座微分型恢复力模型屈服前刚度的研究[J].工程力学,2010,27(10):7-13.
Jin Jian-min,Zhou Fu-lin,Tan Ping. Study on pre-yield shear stiffness of differential restoring force model for lead rubber bearing[J]. Engineering Mechanics, 2010,27(10):7-13.
7 汪新明.橡胶隔震支座非线性建模及参数识别研究[D].南京:南京航空航天大学航空宇航学院,2018.
Wang Xin-ming. Research on nonlinear modeling and parameter identification of rubber isolation bearings[D]. Nanjing:College of Aerospace Engineering,Nanjing Aerospace University,2018.
8 Pan T C,Yang G.Nonlinar analysis of base-isolated MOOF structures[J].Proceedings of the 11th Word Conference on Earthquake Engineering, Mexico,1996:No.1534.
9 Robert J.Noninear rate dependent model of high damping rubber bearing[J]. Bulletion of Earthquake Engineering,2004, 8(1):397-403.
10 Koh CG,Kelly J M.A simple mechanical model for elastomeric bearings used in based isolation[J]. International Journal of Mechanical Sciences, 1998,30(12):933-943.
11 Kikuchi M,Yamamoto S,Aiken I D.An analytical model for lead-rubber bearing sunder large demations[J]. Proceedings of the 8th Pacific Conference on Eartuquake Engineering,Singpore, 2007:222.
12 Dall Asta A,Ragni L.Experimental tests analytical model of high damping rubber d isspating devices[J]. Engineering Structures,2006,28(13):1874-1884.
13 Bhuiyan A R,Okui Y,Mitamura H,et al.A rheology model of high damping rubber bearings for seismic analysis:Identification of nonlinear viscosity[J].International Journal of Solids and Structures,2009,46(7,8):1778-1792.
14 中国建筑标准设计研究所.建筑隔震橡胶支座:JG118—2000[M].北京:中国建筑工业出版社,2000.
15 中华人民共和国国家标准.公路桥梁板式橡胶支座第一部分:橡胶隔震支座试验方法[S].北京:中国标准出版社,2007.
[1] 张广泰,章金鹏,王明阳,陆东亮,张梅. 老化‒荷载耦合作用下废旧叠层轮胎隔震垫隔震性能[J]. 吉林大学学报(工学版), 2021, 51(1): 96-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!