吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 376-384.doi: 10.13229/j.cnki.jdxbgxb20210704

• 材料科学与工程 • 上一篇    下一篇

氮掺杂Co/Co3O4@C核壳纳米粒子作为锂电池负极材料的性能

魏素凤1(),平昕2,李春霖2,王国勇2()   

  1. 1.长春工业大学 材料科学与工程学院,长春 130012
    2.吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2021-07-26 出版日期:2023-02-01 发布日期:2023-02-28
  • 通讯作者: 王国勇 E-mail:weisufeng@gmail.com;materwanggy@jlu.edu.cn
  • 作者简介:魏素凤(1979-),女,高级实验师,博士.研究方向:纳米材料.E-mail: weisufeng@gmail.com
  • 基金资助:
    国家自然科学基金重点研发项目(2018YFA0702304);长春市重点研发项目(3A4185522416)

N⁃doped Co/Co3O4@C core⁃shell nanoparticles as anode materials for lithium⁃ion batteries

Su-feng WEI1(),Xin PING2,Chun-lin LI2,Guo-yong WANG2()   

  1. 1.College of Materials Science and Engineering,Changchun University of Technology,Changchun 130012,China
    2.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2021-07-26 Online:2023-02-01 Published:2023-02-28
  • Contact: Guo-yong WANG E-mail:weisufeng@gmail.com;materwanggy@jlu.edu.cn

摘要:

高容量的过渡金属氧化物要想替代目前低容量的商业碳作为锂离子电池负极材料,必须设计解决碎化问题和电导率问题。本文通过热解和水热氧化法合成了N掺杂的碳基 Co/Co3O4@C纳米粒子核壳结构复合材料。通过调整水热时间,可以获得结构完整、形态规则、尺寸均匀的产品。其作为锂离子电池电极材料,在0.1A/g恒流循环50次后,放电容量稳定在620 mA·h/g(碳质量分数为56.8%),高于其理论比容量,在2A/g恒流下250次循环后,可逆容量为572 mA·h/g,库仑效率可保持在99.8%左右。这说明具有良好分散性的N掺杂碳基Co/Co3O4@C纳米粒子核壳结构具有优良的结构稳定性和电导率,作为负极材料有希望应用于高容量、大功率的锂离子电池当中。

关键词: 金属有机骨架, 核壳结构, 锂离子电池, 负极材料

Abstract:

When high-capacity transition metal oxides want to replace current low-capacity commercial carbon as anode materials for lithium-ion batteries, they must be designed to solve the pulverization and conductivity issues. In this paper,N-doped carbon-based Co/Co3O4@C core-shell structure composites by pyrolysis and hydrothermal oxidation were innovatively synthesized by us. By adjusting the hydrothermal time, complete structure, regular morphology and uniform size product can be achieved. The core-shell structure composed of nitrogen-doped carbon can shorten the transmission path of lithium-ion, which leads to the high conductivity of these composites. In addition, there are more pores in the amorphous carbon, which can not only make full contact with the electrolyte during charging and discharging, but also reduce the volume expansion generated in the cycling process and delay the rate of capacity decay caused by the structural collapse. The results of the electrochemical show that the discharge capacity was stable at 620 mA·h/g (carbon content 56.8 wt%) after 50 cycles of constant current of 0.1 A/g, which is higher than its theoretical specific capacity. After 250 cycles, the reversible capacity can reach 572 mA·h/g and the coulomb efficiency can be maintained at about 99.8% under the constant current of 2A/g. The results show that the N-doped carbon-based Co/Co3O4 nanoparticle core-shell structure composites with good dispersion can improve the conductivity and electrochemical performance of the electrode of the high capacity of lithium ion batteries with a long cycle life.

Key words: metal-organic frameworks, core-shell structure, lithium-ion batteries, anode materials

中图分类号: 

  • TB332

图1

X射线衍射图和场发射扫描电子显微镜图"

图2

Co/Co3O4 @ C-8h X射线光电子能谱"

图3

Co/Co3O4@C-8h的透射电子显微镜图和能谱图"

图4

Co/ Co3O4@C-8h的电化学性能测试图"

图5

Co/Co3O4@C和Co3O4的阻抗特性曲线(频率范围从100 kHz到0.01 Hz)"

表1

Co/Co3O4@C电极材料在不同充电速率下的比容量同多种氧化钴基电极材料的对比表"

样 本电流密度/ (mA·g-1容量/ (mA·h·g-1
Co3O4 nanoparticles1000462

MOF-derived Co3O4

microspheres

1000392
Co3O4-CuO nanomatrix1000497.78
CoO@Co3O4@C500158±5
Co3O4/RGO100077.7
Co3O4@N-CNFs800267
NCF/Co3O41000340

N-doped

Co/Co3O4@C(本文)

1000498
1 Kessel D G. Global warming-facts, assessment, countermeasures[J] Journal of Petroleum Science and Engineering, 2000, 26(1): 157-168.
2 Wang J F, Yang C X, Liu F, et al. The development and utilization of new clean energy[C]∥IEEE International Conference on Power and Renewable Energy, Shanghai, China, 2016: 639-643.
3 马苗苗,刘立成,王鑫,等.风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报:工学版, 2022, 52(9): 2096-2106.
Ma Miao-miao, Liu Li-cheng, Wang Xin, et al. Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2096-2106.
4 Wang L, Fu Y, Chen Y, et al. Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries[J] Journal of Alloys and Compounds, 2017, 724: 1117-1123.
5 Mahmood N, Zhu J, Rehman S, et al. Control over large-volume changes of lithium battery anodes via active-inactive metal alloy embedded in porous carbon[J]. Nano Energy, 2015, 15: 755-765.
6 Luo D, Deng Y P, Wang X,et al.Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage[J].ACS Nano, 2017, 11(11): 11521-11530.
7 Chen H, He J, Li Y,et al.Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(13): 7691-7700.
8 Du P, Dong Y, Liu C,et al.Fabrication of hierarchical porous nickel based metal-organic framework(Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 518: 57-68.
9 Yan C, Chen G, Zhou X,et al.Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries[J].Advanced Functional Materials, 2016, 26(9): 1428-1436.
10 Zheng Z, Wu H H, Chen H,et al.Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries[J].Nanoscale, 2018, 47(10): 22203-22214.
11 Zhao L, Wu H H, Yang C,et al.Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes[J]. ACS Nano, 2018, 12(12): 12597-12611.
12 Li Y, Fu Y, Liu W,et al.Porous carbon derived from loofah sponge/flower-like CoO nanocomposites for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 793: 533-540.
13 Zheng F, Wei L.Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 790: 955-962.
14 Wu J, Yin W J, Liu W W, et al. High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries[J].Journal of Materials Chemistry A, 2016, 28(4): 10940-10947.
15 Lu S, Gao Y, Li Z, et al. Hierarchical hybrid sandwiched structure of ultrathin graphene nanosheets enwrapped MnO nanooctahedra with excellent lithium storage capability[J]. Journal of Alloys and Compounds, 2018, 749: 424-432.
16 Hong W, Wang J, Li Z,et al.Hierarchical Co3O4@Au-decorated PPy core/shell nanowire arrays: an efficient integration of active materials for energy storage[J]. Journal of Materials Chemistry A, 2015, 3(6): 2535-2540.
17 Einert M, Wessel C, Badaczewski F, et al. Nitrogen-doped carbon electrodes: influence of microstructure and nitrogen configuration on the electrical conductivity of carbonized polyacrylonitrile and poly(ionic liquid) blends[J]. Macromolecular Chemistry and Physics, 2015, 216(19): 1930-1944.
18 范光辉,余剑武,罗红,等.混合动力汽车电池性能影响因素分析与试验[J].吉林大学学报:工学版,2019,49(5):1451-1458.
Fan Guang-hui, Yu Jian-wu, Luo Hong, et al. Influencing factors analysis and experimental study of battery performances in hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1451-1458.
[1] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
[2] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[3] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[4] 陈燕虹, 吴伟静, 刘宏伟, 沈帅, 李策园, 耿焕亮. 纯电动汽车电池箱的热特性[J]. 吉林大学学报(工学版), 2014, 44(4): 925-932.
[5] 张彩萍, 姜久春. 用基于遗传优化的扩展卡尔曼滤波算法辨识电池模型参数 [J]. , 2012, (03): 732-737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[7] 于华楠,康健 . 改进的基于Kalman滤波的盲多用户检测算法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .
[8] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .