吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 1873-1891.doi: 10.13229/j.cnki.jdxbgxb.20221342

• 综述 •    

车用智能材料发展现状综述

沈传亮(),马骁远,于婧,叶瑞章,岳玉冰,高振海()   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2022-10-19 出版日期:2023-07-01 发布日期:2023-07-20
  • 通讯作者: 高振海 E-mail:shencl@jlu.edu.cn;gaozh@jlu.edu.cn
  • 作者简介:沈传亮(1978-),男,教授,博士.研究方向:车身智能化.E-mail: shencl@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51875237);吉林省科技发展计划项目(20210101060JC)

Review of development status of intelligent materials for vehicles

Chuan-liang SHEN(),Xiao-yuan MA,Jing YU,Rui-zhang YE,Yu-bing YUE,Zhen-hai GAO()   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2022-10-19 Online:2023-07-01 Published:2023-07-20
  • Contact: Zhen-hai GAO E-mail:shencl@jlu.edu.cn;gaozh@jlu.edu.cn

摘要:

作为新一代车用材料,智能材料为实现汽车轻量化、智能化等设计目标提供了新的研究方向和设计思路。为进一步推动车用智能材料的研究进程,本文针对压电材料、磁流变材料以及形状记忆合金3种智能材料分别展开综述,阐述了各类材料的特殊性质,系统总结了在汽车能量回收、结构振动抑制、传感器、执行器、安全防护等重要研究领域的国内外研究成果。最后,分析了目前车用智能材料商用化存在的挑战,并指出了未来研究的方向。

关键词: 车身工程, 车用材料, 智能材料与结构, 压电材料, 磁流变材料, 形状记忆合金

Abstract:

As a new generation of automotive materials, smart materials provide new research directions and design ideas for the realization of automotive lightweight and intelligent design goals. In order to further promote the research process of smart materials for automobiles, this paper reviews piezoelectric materials, magnetorheological materials and shape memory alloys respectively, describes the special properties of various materials, and systematically summarizes domestic and foreign research achievements in important research fields such as automotive energy recovery, structural vibration suppression, sensors, actuators, and safety protection. Finally, the challenges of commercialization of smart materials for automobiles are analyzed, and the directions of future research are pointed out.

Key words: body engineering, automotive materials, smart materials and structures, piezoelectric material, magnetorheological material, shape memory alloy

中图分类号: 

  • U465

图1

正、逆压电效应示意图"

图2

燃料能量损失分析"

图3

压电棒式能量回收装置模型"

图4

压电贴片供电为78个LED灯供电和存储的电力进行无线数据传输演示"

图5

压电能量收集器和作为安装支架的排气管延长件"

图6

三种典型的压电分流耗能电路"

图7

车顶棚振动主动控制系统"

图8

安装在汽车模型前发动机罩的压电碰撞传感器"

图9

磁性粒子在磁场的作用下规则排列"

图10

磁流变悬置结构"

图11

旋转磁流变液阻尼器座椅悬架系统"

图12

磁流变悬架阻尼器示意图和实物图"

图13

磁流变吸能器"

图14

盘式流变液离合器和筒式磁流变液离合器"

图15

单程、双程、全程形状记忆效应"

表1

两种执行器的性能比较"

性能直流驱动执行器

形状记忆合金

执行器

反应时间(完整循环)/s32~3
安装空间紧凑沿风道
噪声轻微噪声无噪声
结构复杂性
质量/g约65约20
零件数量/个>20<10
定位精度/(°)±1.5±2.25
功耗/W挡板移动时为1持续为1

图16

形状记忆合金后视镜执行机构示意图"

图17

被动界面热调节装置原理图以及试验装置实物图"

图18

未变形时呈圆顶形状和变形时呈平面形状"

图19

复合结构热成像损伤识别"

图20

形状记忆合金加载-卸载过程的应力-应变曲线"

图21

套筒式形状记忆合金吸能结构"

表2

智能材料在汽车不同研究领域的应用"

材料种类序号应用领域参考文献
压电材料汽车能量回收系统汽车悬架8?11
轮胎13?16
汽车废气1718
汽车结构振动抑制系统19?26
车用传感器运行状态2728
外部环境29?32
内部乘员33?35
磁流变材料汽车隔震系统发动机悬置37?40
座椅悬架41?46
汽车悬架47?50
?汽车吸能防护装置51?53
?车用离合器55?57
?车用制动器58?61
形状记忆合金?车用执行器6668?72
?车用温度传感器73?75
?车身智能复合材料结构车身结构振动抑制76?78
?可变形车身结构82?84
?车身结构健康监测88?90
?汽车安全防护系统91?94
1 郑雪芹.汽车新材料的应用及发展趋势[J].汽车纵横,2021(11):73-76.
Zheng Xue-qin. Application and development trend of new automotive materials[J]. Automobile Aspect,2021(11):73-76.
2 Hornbogen E, Mertmann M. ''Intelligent''materials, composites and systems[J]. Metall, 1996, 50(12): 809-814.
3 Uchino K.Advanced Piezoelectric Materials: Science and Technology[M]. London: Woodhead Publishing, 2017.
4 Meeker T R. Publication and proposed revision of ANSI/IEEE standard 176-1987[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1996, 43(5): 717-772.
5 Abdelkareem M A A, Xu L, Ali M K A, et al. Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699.
6 Mahala K M, Gadkari P, Deb A. Mathematical models for designing vehicles for ride comfort[C]∥Proceedings of the 2nd International Conference on Research into Design, Bangalore, India, 2009.
7 Al-Yafeai D, Darabseh T, Mourad A H I. A state-of-the-art review of car suspension-based piezoelectric energy harvesting systems[J]. Energies, 2020, 13(9): 2336.
8 Xiao H, Wang X, John S. A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester[J]. Mechanical Systems and Signal Processing, 2015, 58: 355-375.
9 Xie X D, Wang Q. Energy harvesting from a vehicle suspension system[J]. Energy, 2015, 86: 385-392.
10 Benhiba A, Bybi A, Alla R, et al. Investigation of vibrations energy harvesting from passive car suspension using quarter car model under bump excitation[J]. E3S Web of Conferences, 2022, 336: No.00053.
11 Darabseh T, Al-Yafeai D, Mourad A H I. Energy harvesting from car suspension system: mathematical approach for half car model[J]. Journal of Mechanical Engineering and Sciences, 2021, 15(1): 7695-7714.
12 Askari H, Hashemi E, Khajepour A, et al. Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects[J]. Advanced Materials Technologies, 2019, 4(1): No.1800105.
13 Behera M M. Piezoelectric energy harvesting from vehicle wheels[J]. Int J Eng Res Technol, 2015, 4(5): 1-4.
14 Hu Y, Xu C, Zhang Y, et al. A nanogenerator for energy harvesting from a rotating tire and its application as a self‐powered pressure/speed sensor[J]. Advanced Materials, 2011, 23(35): 4068-4071.
15 Maurya D, Kumar P, Khaleghian S, et al. Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles[J]. Applied Energy, 2018, 232: 312-322.
16 Rui X, Zeng Z, Zhang Y, et al. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels[J]. IEEE Transactions on Vehicular Technology, 2019, 69(2): 1440-1451.
17 Madaro F, Mehdipour I, Caricato A, et al. Available energy in cars' exhaust system for IoT remote exhaust gas sensor and piezoelectric harvesting[J]. Energies, 2020, 13(16):No.4169.
18 高小林,王袁明.基于压电材料的汽车尾气涡轮发电装置设计研究[J].河南科技,2015(2):34-36.
Gao Xiao-lin, Wang Yuan-ming. Design and research of automobile exhaust turbine power generation device based on piezoelectric materials [J]. Henan Science and Technology,2015(2):34-36.
19 Takigami T, Tomioka T. Investigation to suppress bending vibration of railway vehicle carbodies using piezoelectric elements[J]. Quarterly Report of RTRI, 2005, 46(4): 225-230.
20 闫旭,郭辉,王岩松,等.周期性压电分流薄板结构振动控制方法研究[J].压电与声光,2017,39(1):126-130.
Yan Xu, Guo Hui, Wang Yan-song, et al. Research on vibration control method of periodic piezoelectric shunt thin plate structure[J]. Piezoelectricity & Acousto Optics, 2017,39(1):126-130.
21 Salloum R, Töws P, Schmidt S, et al. Vibration damping of a composite control arm through embedded piezoceramic patches shunted with a negative capacitance[J]. Smarte Strukturen Und Systeme, 2016: 182-193.
22 沈传亮,安孝文,王大学.基于压电材料的车身薄壁结构振动主动控制仿真分析[J].新型工业化,2012,2(11):50-56.
Shen Chuan-liang, An Xiao-wen, Wang Da-xue. Based on piezoelectric material body thin-walled structure vibration active control simulation analysis [J]. Journal of New Industrialization, 2012, 2 (11): 50-56.
23 安孝文. 基于压电材料的车身薄壁结构振动主动控制研究[D]. 长春:吉林大学汽车工程学院,2012.
An Xiao-wen. Active vibration control of thin-walled car body structure based on piezoelectric materials[D]. Changchun: College of Automotive Engineering, Jilin University,2012.
24 张勇,李鑫,王兰军.压电陶瓷在车身板件振动主动控制中的应用研究[J].科学技术与工程,2013,13(15):4264-4269.
Zhang Yong, Li Xin, Wang Lan-jun. Research on application of piezoceramics in active vibration control of body panels[J]. Science Technology and Engineering,2013,13(15):4264-4269.
25 Guo H, Wang Y S, Yang C, et al. Vehicle interior noise active control based on piezoelectric ceramic materials and improved fuzzy control algorithm[J]. Applied Acoustics, 2019, 150: 216-226.
26 Jung H K, Park G, Kim J K. Piezoelectric-based dither control for automobile brake squeal suppression under various braking conditions[J]. Journal of Vibration and Control, 2021, 27(19/20): 2192-2204.
27 de Medeiros R, Ribeiro M L, Tita V. Computational methodology of damage detection on composite cylinders: structural health monitoring for automotive components[J]. International Journal of Automotive Composites, 2014, 1(1): 112-128.
28 Moharana S, Sevugaperumal Arun V. Piezo impedance-based monitoring of loosening of bolts: Experimental and numerical study[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(8): 1056-1071.
29 Joshi S, Nayak M M, Rajanna K. Tailoring thin‐film piezoelectrics for crash sensing[J]. Small, 2018, 14(29): 1800608.
30 Prasanti K, Kalpana S, Savalam C S. A novel feature of increased safety during car crashes[C]∥The 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 2018: 855-859.
31 Matilainen M, Tuononen A. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer[J]. Mechanical Systems and Signal Processing, 2015, 52: 548-558.
32 Erdogan G, Alexander L, Rajamani R. Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor[J]. IEEE Sensors Journal, 2010, 11(2): 267-279.
33 Baek H J, Lee H B, Kim J S, et al. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state[J]. Telemedicine and e-Health, 2009, 15(2): 182-189.
34 Meteier Q, Kindt M, Angelini L, et al. Non-intrusive contact respiratory sensor for vehicles[J]. Sensors, 2022, 22(3):No. 880.
35 Nagase T, Nonaka K, Koishi Y, et al. Heat-resistant, flexible piezoelectric sheet sensors based on solution-processed zinc oxide films for in-vehicle driver monitoring applications[J]. ACS Applied Electronic Materials, 2021, 3(11): 4743-4756.
36 Rabinow J. The magnetic fluid clutch[J]. Electrical Engineering, 1948, 67(12): 1167-1176.
37 史文库,侯锁军,王雪婧,等.磁流变发动机悬置隔振性能与模糊PID控制[J]. 农业工程学报,2012,28(20):50-57.
Shi Wen-ku, Hou Suo-jun, Wang Xue-jing, et al. Vibration isolation performance and fuzzy pid control of magnetorheological engine[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(20):50-57.
38 Chen P, Bai X X, Qian L J, et al. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing[J]. Smart Materials and Structures, 2016, 25(5): No.055002.
39 Liu Q, Bai G D, Liu Z H, et al. Magnetorheological semi-active mount system for engines: prototyping and testing[J]. Journal of Automobile Engineering, 2020, 234(13): 3081-3094.
40 Ladipo I L, Fadly J D, Faris W F. Characterization of magnetorheological elastomer (MRE) engine mounts[J]. Materials Today: Proceedings, 2016, 3(2): 411-418.
41 Paddan G S, Griffin M J. Evaluation of whole-body vibration in vehicles[J]. Journal of Sound and Vibration, 2002, 253(1): 195-213.
42 Choi S B, Han Y M. MR seat suspension for vibration control of a commercial vehicle[J]. International Journal of Vehicle Design, 2003, 31(2): 202-215.
43 史文库,张曙光,陈志勇,等.磁流变半主动座椅悬架建模及振动特性分析[J].西南交通大学学报,2023,58(2):253-260.
Shi Wen-ku, Zhang Shu-guang, Chen Zhi-yong, et al. Modeling and vibration characteristics analysis of magnetorheological semi-active seat suspension[J]. Journal of Southwest Jiaotong University, 2023,58(2):253-260.
44 Sun S S, Ning D H, Yang J, et al. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles[J]. Smart Materials and Structures, 2016, 25(10): No.105032.
45 Du H, Li W, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator[J]. Smart Materials and Structures, 2011, 20(10):No.105003.
46 Liu C, Hemmatian M, Sedaghati R, et al. Development and control of magnetorheological elastomer-based semi-active seat suspension isolator using adaptive neural network[J]. Frontiers in Materials, 2020, 7:No.00171.
47 Yaakub S F, Yahaya S H, Ahmad F, et al. A comprehensive review on the related models in magneto-rheological automobile suspension system[J]. International Journal of Engineering Research and Technology, 2020, 13(7): 1700-1708.
48 Meng F, Zhou J. Modeling and control of a shear-valve mode MR damper for semiactive vehicle suspension[J]. Mathematical Problems in Engineering, 2019(1):1-8.
49 Yao J, Shi W, Zheng J, et al. Development of a sliding mode controller for semi-active vehicle suspensions[J]. Journal of Vibration and Control, 2013, 19(8): 1152-1160.
50 Zhang X, Yang Y, Guo K, et al. Methodology on a novel magnetorheological valve controlled damper synthesis design[J]. Smart Materials and Structures, 2020, 29(4): No.045006.
51 屈贤,林繁国,张金龙.基于磁流变缓冲吸能装置的汽车碰撞仿真分析[J].汽车安全与节能学报,2020,11(4):487-492.
Qu Xian, Lin Fan-guo, Zhang Jin-long. Simulation Analysis of vehicle collision based on magnetorheological buffer energy absorption device[J]. Journal of Automobile Safety and Energy Conservation,2020,11(4):487-492.
52 Fekry A R, Oraby W A H, Ali M A. Vehicle body pitch control through integration of MR damping system implemented in both vehicle suspension and front-end structure[J]. Journal of Automobile Engineering, 2022: 237(5):1082-1092.
53 Bai X X, Wereley N M. Magnetorheological impact seat suspensions for ground vehicle crash mitigation[C]∥ International Society for Optics and Photonics on Active and Passive Smart Structures and Integrated Systems San Diego,USA,2014.
54 麻建坐,贺建民,黄金. 圆筒式磁流变离合器传动特性分析[J].重庆工学院学报:自然科学版,2009, 23(3):34-38, 42.
Ma Jian-zuo, He Jian-min, Huang Jin. Transmission characteristics analysis of cylinder magnetorheological clutch[J]. Journal of Chongqing Institute of Technology (Natural Science Edition),2009,23(3):34-38, 42.
55 张春光,苗运江,巫峰.汽车磁流变液离合器的设计[J].润滑与密封,2012,37(5):91-94.
Zhang Chun-guang, Miao Yun-jiang, Wu Feng. Design of vehicle magnetorheological fluid clutch[J]. Lubrication Engineering,2012,37(5):91-94.
56 陈德民,张宏,蔡青格,等.车用磁流变离合器设计与性能实验[J].机械强度,2016,38(1):49-53.
Chen De-min, Zhang Hong, Cai Qing-ge, et al. Automotive magnetorheological clutch design and performance test[J]. Journal of Mechanical Strength,2016,38(1):49-53.
57 Zhang H, Du H, Sun S, et al. A novel magneto-rheological fluid dual-clutch design for two-speed transmission of electric vehicles[J]. Smart Materials and Structures, 2021, 30(7):No. 075035.
58 Zainordin A Z, Mohamed Z, Ahmad F. The magnetorheological fluid: testing on automotive braking system[J]. International Journal of Automotive and Mechanical Engineering, 2021, 18(1):8577⁃8584.
59 王维成, 罗一平, 王磊, 等. 基于矩形凸块的盘式磁流变制动器设计与仿真[J]. 机械传动, 2021, 45(4): 64-68, 79.
Wang Wei-cheng, Luo Yi-ping, Wang Lei, et al. Design and simulation of disc magnetorheological brake based on rectangular convex block[J]. Journal of Mechanical Transmission, 2021, 45(4): 64-68, 79.
60 黄金,周轶,王西.圆盘式与圆筒式磁流变制动器制动转矩研究[J].机械设计与制造,2020(4):71-74.
Huang Jin, Zhou Yi, Wang Xi. Research on braking torque of disc and cylinder magnetorheological brake[J]. Machinery Design and Manufacture, 2020(4):71-74.
61 Acharya S, Kumar H. Investigation of magnetorheological brake with rotor of combined magnetic and non-magnetic materials[J]. SN Applied Sciences, 2019, 1(9): 1-7.
62 Ölander A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society, 1932, 54(10): 3819-3833.
63 Buehler W J, Gilfrich J V, Wiley R C. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5): 1475-1477.
64 Kauffman G B, Mayo I. The story of nitinol: the serendipitous discovery of the memory metal and its applications[J]. The Chemical Educator, 1997, 2(2): 1-21.
65 Motors G. Chevrolet debuts lightweight "smart material" on corvette[DB/OL]. [2013-03-21]. .
66 Neugebauer R, Bucht A, Pagel K, et al. Numerical simulation of the activation behavior of thermal shape memory alloys[C]∥Industrial and Commercial Applications of Smart Structures Technologies, 2010, 7645: 137-148.
67 Czechowicz A, Lygin K, Langbein S. On the potentials of shape memory alloy valves[J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2687-2695.
68 Stöckel D. The shape memory effect: phenomenon[J]. Alloys, Applications, 2000: 1-13.
69 杜英辰. 形状记忆合金主动式发动机罩弹起装置研究[D]. 长春:吉林大学汽车工程学院,2021.
Du Ying-chen. Research on active hood ejection device of shape memory alloy[D]. Changchun: College of Automotive Engineering, Jilin University, 2021.
70 Williams E A, Shaw G, Elahinia M. Control of an automotive shape memory alloy mirror actuator[J]. Mechatronics, 2010, 20(5): 527-534.
71 Ameduri S, Brindisi A, Ciminello M, et al. Car Soundproof improvement through an SMA adaptive system[J]. Actuators, 2018, 7(4):No. 88.
72 Ruth D J S, Dhanalakshmi K, Choi S B. A sensaptic adas device using shape memory alloy wires: Design and control[J]. Materials, 2021, 14(13): No.3494.
73 Imran H Y, Majid D L A A, Ethaib S, et al. Utilization of shape memory alloy (SMA) for temperature detection and warning in an automobile engine[C]∥IOP Conference Series: Materials Science and Engineering, 2021, 1058(1): No.012039.
74 Suman A, Fortini A, Merlin M. A shape memory alloy-based morphing axial fan blade: functional characterization and perspectives[J]. Energy Procedia, 2015, 82: 273-279.
75 Hao M, Li J, Park S, et al. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy[J]. Nature Energy, 2018, 3(10): 899-906.
76 Bodaghi M, Shakeri M, Aghdam M M. Passive vibration control of plate structures using shape memory alloy ribbons[J]. Journal of Vibration and Control, 2017, 23(1): 69-88.
77 Huang Y, Zhang Z, Li C, et al. Sound radiation of orthogonal antisymmetric composite laminates embedded with pre-strained SMA wires in thermal environment[J]. Materials, 2020, 13(17):No.3657.
78 Shen C, Su W, Sun G, et al. Preliminary study of vibration characteristics of intelligent beam with the influence of SMA's restoring force[J]. MATEC Web of Conferences, 2018, 238: No.05007.
79 Sellitto A, Riccio A. Overview and future advanced engineering applications for morphing surfaces by shape memory alloy materials[J]. Materials, 2019, 12(5): No.708.
80 Daynes S, Weaver P M. Review of shape-morphing automobile structures: concepts and outlook[J]. Journal of Automobile Engineering, 2013, 227(11): 1603-1622.
81 Chillara V S C, Dapino M J. Review of morphing laminated composites[J]. Applied Mechanics Reviews, 2020, 72(1):No. 010801.
82 Chillara V S C, Headings L M, Tsuruta R, et al. Shape memory alloy-actuated prestressed composites with application to morphing automotive fender skirts[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(3): 479-494.
83 Han M W, Rodrigue H, Cho S, et al. Woven type smart soft composite for soft morphing car spoiler[J]. Composites Part B: Engineering, 2016, 86: 285-298.
84 Hein A, Holder D, Maier J, et al. Potential analysis of smart materials and methodical approach developing adaptive designs using shape memory alloys[C]∥ Proceedings of Nord Design, Linköping, Sweden, 2018.
85 李立军, 孙凌玉, 黄彬城, 等. 智能材料与汽车结构健康监测[J]. 汽车技术, 2018(5): 46-52.
Li Li-jun, Sun Ling-yu, Huang Bin-cheng, et al. Intelligent materials and vehicle structure health monitoring [J]. Automobile Technology, 2018(5): 46-52.
86 Wu W, Liu Q, Zong Z, et al. Experimental investigation into transverse crashworthiness of CFRP adhesively bonded joints in vehicle structure[J]. Composite Structures, 2013, 106: 581-589.
87 Xia Y, Wierzbicki T, Sahraei E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267: 78-97.
88 Pinto F, Ciampa F, Meo M, et al. Multifunctional SMArt composite material for in situ NDT/SHM and de-icing[J]. Smart Materials and Structures, 2012, 21(10):No.105010.
89 Pinto F, Maroun F Y, Meo M. Material enabled thermography[J]. NDT & E International, 2014, 67: 1-9.
90 Rizzo F, Pinto F, Meo M. Development of multifunctional hybrid metal/carbon composite structures[J]. Composite Structures, 2019, 222:No.110907.
91 Kim E H, Lee I, Roh J H, et al. Effects of shape memory alloys on low velocity impact characteristics of composite plate[J]. Composite Structures, 2011, 93(11): 2903-2909.
92 马晓宇. 基于形状记忆合金的复合材料车身板件的耐冲击性研究[D].长春:吉林大学汽车工程学院,2018.
Ma Xiao-yu. Research on impact resistance of composite body panels based on shape memory alloy[D]. Changchun: College of Automotive Engineering, Jilin University,2018.
93 Saeedi A, Shokrieh M M. A novel self-healing composite made of thermally reversible polymer and shape memory alloy reinforcement[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(10): 1585-1593.
94 吴志鹏. 形状记忆合金汽车吸能装置特性研究[D]. 长春:吉林大学汽车工程学院,2017.
Wu Zhi-peng. Research on Characteristics of Shape Memory Alloy Automotive Energy Absorption Device [D]. Changchun: College of Automotive Engineering, Jilin University,2017.
[1] 杨帆,张旭东,赵蒙,折波,邓俊楷. 基于有限元计算的形状记忆合金⁃金属玻璃复合材料变形行为[J]. 吉林大学学报(工学版), 2021, 51(1): 172-180.
[2] 周淼磊, 高巍, 高琳琳, 刘富. 磁控形状记忆合金执行器迟滞非线性模型 [J]. , 2012, (03): 714-718.
[3] 刘旺中, 陈照波, 黄山云, 焦映厚. 形状记忆合金迟滞模型 [J]. , 2012, (03): 719-725.
[4] 曹宗杰,王铭伟,全吉成,胡进海 . 缺陷压电结构电弹性问题断裂分析[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 157-160.
[5] 周勇, 王鑫伟, 孙亚飞, 谈梅兰. 压电复合材料层合板弯曲变形及脱粘损伤的有限元分析[J]. 吉林大学学报(工学版), 2004, (2): 180-184.
[6] 韩立军, 赵熹华. TiNi形状记忆合金精密脉冲电阻对焊接头的形状恢复率[J]. 吉林大学学报(工学版), 2001, (1): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!