吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1469-1481.doi: 10.13229/j.cnki.jdxbgxb.20220816

• 农业工程·仿生工程 • 上一篇    

基于双目仿鹰眼视觉与超分辨的果园三维点云重建

张自超1,2(),陈建1()   

  1. 1.中国农业大学 工学院,北京 100083
    2.自然资源部 超大城市自然资源时空大数据分析应用重点实验室,上海 200063
  • 收稿日期:2022-06-28 出版日期:2024-05-01 发布日期:2024-06-11
  • 通讯作者: 陈建 E-mail:zhangzc1@cau.edu.cn;jchen@cau.edu.cn
  • 作者简介:张自超(1995-),男,博士研究生. 研究方向:无人系统智能仿生感知技术. E-mail: zhangzc1@cau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFD2001405);国家自然科学基金项目(51979275);浙江省农业智能装备与机器人重点实验室开放课题项目(2023ZJZD2306);自然资源部超大城市自然资源时空大数据分析应用重点实验室开放基金项目(KFKT-2022-05);深圳市科技计划项目(ZDSYS20210623091808026);虚拟现实技术与系统国家重点实验室(北京航空航天大学)开放课题基金项目(VRLAB2022C10);能源清洁利用国家重点实验室开放基金课题项目(ZJUCEU2022002);农业农村部长三角智慧农业技术重点实验室开放基金项目(KSAT-YRD2023005);农业农村部华南热带智慧农业技术重点实验室开放课题(HNZHNY-KFKT-202202);高等教育科学研究规划课题重点课题(23XXK0304);中国农业大学2115人才工程项目

A mapping method using 3D orchard point cloud based on hawk-eye-inspired stereo vision and super resolution

Zi-chao ZHANG1,2(),Jian CHEN1()   

  1. 1.College of Engineering,China Agricultural University,Beijing 100083,China
    2.Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,MNR,Shanghai 200063,China
  • Received:2022-06-28 Online:2024-05-01 Published:2024-06-11
  • Contact: Jian CHEN E-mail:zhangzc1@cau.edu.cn;jchen@cau.edu.cn

摘要:

针对双目视觉受限于分辨率与基线距,对远距离目标感知精度不足,在室外光照条件复杂的情况下,无法完成稳定感知,获取三维点云质量无法满足果园作业需求的问题,提出一种基于双目仿鹰眼视觉与超分辨的果园三维点云重建方法。本文模拟鹰眼双中央凹高清成像,通过超分辨率重建改善感知精度;模拟捕食经验所得鹰眼注意力机制,融合参考目标图像特征,提高目标候选区域感知精度与稳定性。针对果园三维点云导航地图,在多种光照条件下,误差比最大降幅为12.2%,标准差最大降幅为2.305。针对果树作业三维点云,点云质量改善较大,可以提供精确的三维空间信息,较为完整地还原果树各枝干三维空间信息。

关键词: 机器视觉, 仿鹰眼感知, 超分辨率重建, 双目视觉, 果园三维点云

Abstract:

The binocular vision sensor suffers from the weakness of long-distance measurement and unstable perception in various outdoor environment, the application of binocular vision is widely but limitedly. Inspired by hawk eyes, by simulating the physiological structure of dual fovea and the search experience which trained by predation, the modified reference-based super resolution is employed for enhancing the binocular vision perception ability and the accuracy of target candidates. The super resolution part aims to improve the global perception ability in vision field, the reference-based super resolution part aims to enhance the specified target candidates by manual references addition. For the orchard 3D point cloud navigation map, the maximum decrease of error ratio and standard deviation is 12.2% and 2.305 under various lighting conditions. For the 3D point cloud reconstruction of fruit tree operation, the quality of point cloud is greatly improved, which can provide accurate 3D spatial information, and restore the 3D spatial information of each branch of fruit tree more completely, which meet the needs of orchard operation.

Key words: machine vision, hawk-eye-inspired sensing, super-resolution reconstruction, binocular vision, 3D point cloud of orchard

中图分类号: 

  • TP391.4

图1

基于参考图像超分辨率的双目仿鹰眼视觉技术路线"

图2

AlexNet输出特征"

图3

VGG输出特征"

图4

ResNet输出特征"

图5

图像特征聚合过程"

图6

基于DCN的特征替换过程"

图7

仿鹰眼超分辨率重建过程"

图8

谱归一化残差块"

图9

果园导航地图重建结果"

表1

场景1试验结果"

试验组评价指标DefaultHEHEATT
1τ/%5.632.821.57
STD0.1500.4310.139
2τ/%2.236.716.09
STD1.7930.9770.495
3τ/%7.703.235.71
STD2.2300.5670.411
4τ/%11.039.125.54
STD1.8551.5331.10
5τ/%11.565.443.23
STD1.8361.0951.86
6τ/%10.196.863.86
STD2.5511.3031.366
7τ/%12.938.057.95
STD1.7051.0761.49

表2

场景2试验结果"

试验组评价指标DefaultHEHEATT
1τ/%3.912.221.58
STD0.1300.270.226
2τ/%4.123.481.36
STD1.2180.8590.441
3τ/%4.111.611.58
STD0.6980.5090.493
4τ/%11.414.842.39
STD1.3801.1950.323
5τ/%16.976.364.85
STD3.2050.8200.947
6τ/%10.174.663.05
STD2.4310.9160.966
7τ/%11.624.514.03
STD2.6131.6911.991
8τ/%15.437.574.18
STD2.7971.15591.389

图10

果树作业点云重建场景1"

图11

果树作业点云重建场景2"

1 周云成, 许童羽, 邓寒冰, 等. 基于自监督学习的番茄植株图像深度估计方法[J]. 农业工程学报, 2019, 35(24): 173-182.
Zhou Yun-cheng, Xu Tong-yu, Deng Han-bing, et al. Method for estimating the image depth of tomato plant based on self-supervised learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 173-182.
2 Wang Y, Chao W L, Garg D, et al. Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving[C]∥Proceedings of the IEEE Conference on CVPR, Long Beach, USA, 2019: 8445-8453.
3 李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350.
Li Qiu-jie, Ding Xu-dong, Deng Xian. Intra-row path extraction and navigation for orchards based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 344-350.
4 Morgan G L K, Liu J G, Yan H S. Precise subpixel disparity measurement from very narrow baseline stereo[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3424-3433.
5 于晓丹, 张远杰, 王元元. 小型无人机载大视场复眼相机光学系统设计[J]. 光子学报, 2019, 48(7): 23-30.
Yu Xiao-dan, Zhang Yuan-jie, Wang Yuan-yuan, et al. Optical design of a compound eye camera with a large-field of view for unmanned aerial vehicles[J]. Acta Photomica Sinica, 2019, 48(7): 23-30.
6 Nguyen C, Park J, Cho K. Novel descattering approach for stereo vision in dense suspended scatterer environments[J]. Sensors, 2017, 17(6): 14-25.
7 杨燕, 张国强, 姜沛沛. 结合景深估计的高斯衰减与自适应补偿去雾[J]. 光学精密工程, 2019, 27(11): 2439-2449.
Yang Yan, Zhang Guo-qiang, Jiang Pei-pei. Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation[J]. Optics and Precision Engineering, 2019, 27(11): 2439-2449.
8 段海滨, 张奇夫, 邓亦敏, 等. 基于仿鹰眼视觉的无人机自主空中加油[J]. 仪器仪表学报, 2014, 35(7): 1450-1458.
Duan Hai-bin, Zhang Qi-fu, Deng Yi-min, et al. Biologically eagle-eye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1450-1458.
9 赵国治, 段海滨. 仿鹰眼视觉技术研究进展[J]. 中国科学: 技术科学, 2017, 47(5): 514-523.
Zhao Guo-zhi, Duan Hai-bin. Progresses in biological eagle-eye vision technology[J]. Science China Technological Sciences, 2017, 47(5): 514-523.
10 Harmening W M, Nikolay P, Orlowski J, et al. Spatial contrast sensitivity and grating acuity of barn owls[J]. Journal of Vision, 2009, 9(7): 1-12.
11 Zhang Z C, Chen J, Xu X Y. Hawk-eye-inspired perception algorithm of stereo vision for orchard 3D points cloud navigation map obtaining[J]. CAAI Transactions on Intelligence Technology, 2023, 8(3): 987-1001.
12 Duan H B, Xu X B, Deng Y M, et al. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3368-3382.
13 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报: 工学版, 2017, 47(6): 1738-1743.
Tan Li-dong, Liu dan, Li Wen-jun. Design of bionic compound eye array for traffic accident scene panorama based on fly compound eye[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1738-1743.
14 Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]∥Proceedings of the 28th International Conference on Neural Information Processing Systems, Bali, Indonesia, 2015: 2017-2025.
15 Almahairi A, Ballas N, Cooijmans T, et al. Dynamic capacity networks[C]∥Proceedings of the conference on ICML, New York, USA, 2016: 2549-2558.
16 Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[C]∥Proceedings of the conference on ICML, Lille, France, 2015: 2048-2057.
17 Lu J S, Xiong C M, Parikh D, et al. Knowing when to look: adaptive attention via a visual sentinel for image captioning[C]∥Proceedings of the IEEE Conference on CVPR, Honolulu, USA, 2017: 375-383.
18 Guzman-Pando A, Chacon-Murguia M I. DeepFoveaNet: deep fovea eagle-eye bioinspired model to detect moving objects[J]. IEEE Transactions on Image Processing, 2021, 30: 7090-7100.
19 郭继昌, 吴洁, 郭春乐, 等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报: 工学版, 2019, 49(5): 1726-1734.
Guo Ji-chang, Wu Jie, Guo Chun-le, et al. Image super-resolution reconstruction based on residual connection convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1726-1734.
20 Jiang Y M, Chan K, Wang X T, et al. Robust reference-based super-resolution via C2-matching[C]∥Proceedings of the IEEE Conference on CVPR, Nashville, USA, 2021: 2103-2112.
21 Xia B, Tian Y P, Hang Y C, et al. Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation for reference-based super-resolution[J]. AAAI, 2022, 3(3): 2768-2776.
22 Yan X, Zhao W B, Yuan K, et al. Towards content-independent multi-reference super-resolution: adaptive pattern matching and feature aggregation[C]∥ Proceedings of the conference on ECCV. Berlin:Springer, 2020: 52-68.
23 Lowe D. Object recognition from local scale-invariant features[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 1150-1157.
24 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]∥Proceedings of the Conference of ICLR, Carnifolia, USA, 2015: 14091556.
25 Gatys L, Ecker A, Bethge M. Image style transfer using convolutional neural networks[C]∥Proceedings of the IEEE Conference on CVPR, Las Vegas, USA, 2016: 2424-2423.
26 Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]∥Proceedings of the Conference of ECCV. Berlin: Springer, 2016: 850-865.
27 Li B, Yan J J, Wu W, et al. High performance visual tracking with siamese region proposal network[C]∥Proceedings of the IEEE Conference on CVPR, Salt Lake, USA, 2018: 8971-8980.
28 Li B, Wu W, Wang Q, et al. Siamrpn++: evolution of siamese visual tracking with very deep networks[C]∥Proceedings of the IEEE Conference on CVPR, Long Beach, USA, 2019: 4282-4291.
29 Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60(6): 84-90.
30 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE conference on CVPR, Las Vegas, USA, 2016: 770-778.
31 Jiang P T, Zhang C B, Hou Q B, et al. LayerCAM: exploring hierarchical class activation maps for localization[J]. IEEE Transactions on Image Processing, 2021, 30: 5875-5888.
32 Miyato T, Kataoka T, Koyama M, al et, Spectral normalization for generative adversarial networks[C]∥Proceedings of the Conference of ECCV, Munich, Germany, 2018: 1-26.
33 Hirschmuller H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 30(2): 328-341.
34 Chen J, Zhang Z C, Yi K, et al. Snake-hot-eye-assisted multi-process-fusion target tracking based on a roll-pitch semi-strapdown infrared imaging seeker[J]. Journal of Bionic Engineering, 2022, 19: 1124-1139.
35 Chen J, Zhang Z C, Zhang K, et al. UAV-borne LiDAR crop point cloud enhancement using grasshopper optimization and point cloud up-sampling network[J]. Remote Sensing, 2020, 12(19): 12193208.
36 Zhang Z C, Wang S B, Chen J, et al. A bionic dynamic path planning algorithm of the micro UAV based on the fusion of deep neural network optimization/filtering and hawk-eye vision[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3728-3740.
37 Zhao R Y, Li X T, Chen J. Eagle-inspired manipulator with adaptive grasping and collapsible mechanism and modular DOF for UAV operations[J]. Computers and Electronics in Agriculture, 2023, 215: 108344.
38 Chen T, Zhao R Y, Chen J,et al. Data-driven active disturbance rejection control of plant-protection unmanned ground vehicle prototype: a fuzzy indirect iterative learning approach[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 128: 593-605.
[1] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[2] 刘思远,侯跃谦,寇莹,任真,胡正乙,赵雪微,葛云鹏. 基于线结构光视觉的平面度误差测量方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3358-3366.
[3] 包昊菁,刘思远,任真,张云辉,胡正乙,葛宇鹏. 基于机器视觉的链轮尺寸测量方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2795-2806.
[4] 李景彬,杨禹锟,温宝琴,坎杂,孙雯,杨朔. 基于根茬检测的秋后残膜回收导航路径提取方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1528-1539.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[7] 张飞, 单忠德, 任永新, 聂军刚, 刘丰. 缸盖缺陷检测系统线阵相机现场标定方法[J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[8] 周晓东, 张雅超, 谭庆昌, 张维君. 基于结构光视觉技术的圆柱度测量新方法[J]. 吉林大学学报(工学版), 2017, 47(2): 524-529.
[9] 林冬梅, 张爱华, 沈蓉, 王平, 杨力铭, 陈晓雷. 双目视觉脉搏测量系统中的相机同步采集方法[J]. 吉林大学学报(工学版), 2015, 45(6): 1999-2006.
[10] 张波,王文军,魏民国,成波. 基于机器视觉的驾驶人使用手持电话行为检测[J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[11] 张保华, 黄文倩, 李江波, 赵春江, 刘成良, 黄丹枫. 基于I-RELIEF和SVM的畸形马铃薯在线分选[J]. 吉林大学学报(工学版), 2014, 44(6): 1811-1817.
[12] 刘长英1, 蔡文静1, 王天皓2, 李机智1, 贾艳梅1, 宋玉河1. 汽车连杆裂解槽视觉检测技术[J]. 吉林大学学报(工学版), 2014, 44(4): 1076-1080.
[13] 卜莎莎, 章毓晋. 基于局部约束线性编码的单帧和多帧图像超分辨率重建[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 365-370.
[14] 刘丽伟, 马松全, 马丽蓉. 基于双DSP立体测距系统的设计与实现[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 335-339.
[15] 万川, 田彦涛, 刘帅师, 陈宏伟. 基于主动机器视觉的人脸跟踪与表情识别系统[J]. 吉林大学学报(工学版), 2013, 43(02): 459-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!