吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2795-2806.doi: 10.13229/j.cnki.jdxbgxb.20211384

• 车辆工程·机械工程 • 上一篇    下一篇

基于机器视觉的链轮尺寸测量方法

包昊菁1(),刘思远1(),任真2,张云辉1,胡正乙3,4,葛宇鹏1   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.长春大学 机械工程学院,长春 130022
    3.华南理工大学 机械与汽车工程学院,广州 510641
    4.长春汽车工业高等专科学校 产教融合发展中心,长春 130010
  • 收稿日期:2021-12-16 出版日期:2023-10-01 发布日期:2023-12-13
  • 通讯作者: 刘思远 E-mail:emmajingjing@jlu.edu.cn;liusiy@jlu.edu.cn
  • 作者简介:包昊菁(1986-),女,讲师,博士.研究方向:机器视觉.E-mail:emmajingjing@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52005213);吉林省科技发展计划项目(20220201040GX);长春市技术创新引导计划市属高校创新能力提高专项项目(21ST06)

Sprocket size measurement method based on machine vision

Hao-jing BAO1(),Si-yuan LIU1(),Zhen REN2,Yun-hui ZHANG1,Zheng-yi HU3,4,Yu-peng GE1   

  1. 1.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.School of Mechanical Engineering,Changchun University,Changchun 130022,China
    3.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641,China
    4.Production and Education Integration Development Center,Changchun Automobile Industry College,Changchun 130010,China
  • Received:2021-12-16 Online:2023-10-01 Published:2023-12-13
  • Contact: Si-yuan LIU E-mail:emmajingjing@jlu.edu.cn;liusiy@jlu.edu.cn

摘要:

由于链轮形状的限制及现场测量对效率的要求,现有的外参标定方法很难应用于链轮轮毂端面的外参标定。因此,本文提出了一种基于二次曲线不变性的外参标定方法,该方法将加工有同心圆环的圆柱体放置在链轮中心孔内,利用圆环上大、小圆及链轮轮毂孔的半径计算出3个圆所对应的方程系数,并以此为基础获得链轮轮毂端面的外参。根据链轮齿廓的形状特征,提出齿顶与齿根圆区域上最高点及最低点筛选模型,并利用最高点数组及最低点数组通过椭圆拟合获得直径。在实验中,将4个不同尺寸的链轮作为被测对象,并将采用本文测量方法获得的结果与三坐标测量仪获得的结果进行对比,结果表明,本文提出的链轮齿根圆与齿顶圆的直径测量误差小于40 μm。

关键词: 机器视觉, 链轮, 尺寸测量, 参数标定

Abstract:

Due to the limitation of sprocket shape and the requirement of on-site measurement for efficiency, the existing external parameter calibration methods are difficult to apply to the external parameter calibration of the hub face. The paper proposes an external parameter calibration method based on the invariance of quadratic curve. In this method, a cylinder machined with concentric rings is placed in the center hole of the sprocket, and the equation coefficients corresponding to the three circles are calculated by the radius of the large and small circles on the ring and the radius of the hub hole of the sprocket. The external parameters of the hub face can be obtained through the above parameters. According to the shape characteristics of the sprocket tooth profile, a screening model of the highest and lowest points on the tip and root circle regions is proposed, and the diameter is obtained by ellipse fitting using the highest point array and the lowest point array. In the experiment, four sprockets of different sizes are used as the measured objects, and the results obtained by the measurement method in this paper are compared with the results obtained by the three-coordinate measuring instrument. The experimental results show that the error of the measurement method in the paper is less than 40 μm.

Key words: machine vision, sprocket, size measurement, parameter calibration

中图分类号: 

  • TH164

图1

基于链轮端面的世界坐标系建立"

图2

圆环与链轮轮毂端面的成像关系"

图3

链轮端面与齿廓被测平面的空间关系"

图4

链轮最高、最低点筛选流程图(Step2)"

图5

链轮最高、最低点筛选流程图(Step3)"

表1

被测链轮主要尺寸 (mm)"

编号齿根圆直径齿顶圆直径
1#75.38582.574
2#53.16267.897
3#116.281131.511
4#230.154244.879

图6

被测链轮"

表2

用于标定的同心圆环尺寸 (mm)"

项目1#2#3#4#

外圆环直径

内圆环直径

9±0.0059±0.00530±0.00530±0.005
5±0.0055±0.00520±0.00520±0.005

图7

链轮尺寸测量实验现场图"

表3

实验设备及主要参数"

设备名称设备型号主要参数
计算机DELL-44060SIntel(R) Core(TM)-i5
相机MER-125-30UM分辨率:1292×964 pixel
镜头ComputerM2514-MP焦距:25 mm
背光源CCS LFL-200发光面积:200 mm ×180 mm

图8

摄像机内参标定图像"

表4

世界坐标与相机坐标的变换矩阵"

链轮编号坐标变换矩阵
1#R1=????0.9922????0.0888-0.0851-0.0812????0.9925????0.0888?????0.0924-0.0812????0.9922
2#R2=????0.9980????0.0436-0.0436-0.0417????0.9981????0.0436????0.0454-0.0417????0.9980
3#R3=????0.9960????0.0519-0.0523-0.0497????0.9971????0.0435????0.0541-0.0408????0.9970
4#R4=????0.9895????0.0951-0.0957-0.0912????0.9940????0.0456????0.0992-0.0365????0.9936

图9

共面标靶"

图10

边缘检测算法评价试验"

图11

齿根圆、齿顶圆对应边界点及拟合结果"

表5

链轮齿根圆直径测量结果 (mm)"

编号标准直径代数椭圆拟合几何椭圆拟合
测量值误差测量值误差

1#

2#

75.385

53.162

75.366

53.124

0.019

0.038

75.364

53.127

0.021

0.035

3#116.281116.2450.036116.2490.032
4#230.154230.1300.024230.1410.013

表6

链轮齿顶圆直径测量结果 (mm)"

编号标准直径代数椭圆拟合几何椭圆拟合
测量值误差测量值误差

1#

2#

82.574

67.897

82.554

67.859

0.020

0.038

82.556

67.931

0.018

0.034

3#131.511131.4750.036131.5440.033
4#244.879244.8630.016244.8570.022

表7

链轮齿根圆直径测量时间 (s)"

方法圆编号平均时间
1#2#3#4#
代数拟合7.346.457.858.237.47
几何拟合9.188.0810.9211.689.97

表8

链轮齿顶圆直径测量时间 (s)"

方法圆编号平均时间
1#2#3#4#
代数拟合6.134.966.286.966.08
几何拟合8.267.269.3410.328.80
1 孟繁忠. 链条链轮产品设计与检验[M]. 北京:机械工业出版社, 1996.
2 谭庆昌, 赵洪志. 机械设计[M]. 北京:高等教育出版社, 2008.
3 张国雄. 三坐标测量机[M]. 天津:天津大学出版社,1999.
4 郑国伟.《中国制造2025》简介与相关情况[J].中国仪器仪表,2018(10):25-28.
Zheng Guo-wei. Brief Introduction of made in China 2025 and related information[J]. China Instrumentation, 2018(10): 25-28.
5 Liu Si-yuan, Tan Qing-chang, Zhang Ya-chao. Shaft diameter measurement of using the structured light vision[J]. Sensors, 2015, 15(8): 19750-19767.
6 Gu Peng, Zhu Chuan-min, Yu Yi-qing,et al. Evaluation and prediction of drilling wear based on machine vision[J]. International Journal of Advanced Manufacturing Technology, 2021, 114(7/8): 2055-2074.
7 Sun Chuan-zhi, Wang Bao-sheng, Liu Yong-meng, et al. Design of high accuracy cylindrical profile measurement model for low-pressure turbine shaft of aero engine[J]. Aerospace Science and Technology, 2019, 95: No.105442.
8 Song Li-mei, Ru Yuan, Yang Yan-gang, et al. Full-view three-dimensional measurement of complex surfaces[J]. Optical Engineering, 2018, 57(10): No.104106.
9 田峰. 链轮毛刺检测方法与几何参数测量技术研究[D]. 扬州:扬州大学机械工程学院,2021.
Tian Feng. Research on spocket burr detection method and geometric parameter measurement technology[D]. Yangzhou: School of Mechnical Engineering,Yangzhou University,2021.
10 Ma Yu-zhen, Yu Yong-xin, Wang Xin-hua. Diameter measuring technique based on capacitive probe for deep hole or oblique hole monitoring[J]. Measurement, 2014, 47: 42-44.
11 Md H A, Syuhei K, Kensuke U. Application of machine vision in improving safety and reliability for gear profile measurement[J]. Machine Vision and Applications, 2014(25):1549-1559.
12 Miao Jian-wei, Tan Qing-chang, Liu Si-yuan, et al. Vision measuring method for the involute profile of a gear shaft[J]. Applied Optics, 2020, 59(13): 4183-4190.
13 Kou Ying, Zhang Long-fei, Liu Si-yuan, et al. Aperture measurement based on a conic invariant[J]. Applied Optics, 2022, 61(6): 99-106.
14 Liu Zhen, Wei Xin-guo, Zhang Guang-jun. External parameter calibration of widely distributed vision sensors with non-overlapping fields of view[J]. Optics and Lasers in Engineering, 2013, 51(6): 643-650.
15 Lu R S, Li Y F. A global calibration method for large-scale multi-sensor visual measurement systems[J]. Sensors and Actuators A-Physical, 2004, 116(3): 384-393.
16 Liu Zhen, Zhang Guang-jun, Wei Zhen-zhong,et al. Novel calibration method for non-overlapping multiple vision sensors based on 1D target[J]. Optics and Lasers in Engineering, 2011, 49(4): 570-577.
17 Bao Hao-jing, Tan Qing-chang, Liu Si-yuan, et al. Computervision measurement of pointer meter readings based on inverse perspective mapping[J]. Applied Sciences-Basel, 2019, 9(18): No.9183729.
18 顾国华, 王佳节, 陈钱, 等. 二维旋转平台下的相机参数标定[J]. 光学精密工程, 2017, 25(7): 1890-1899.
Gu Guo-hua, Wang Jia-jie, Chen Qian, et al. Camera parameter calibration based on two-dimensional rotating platform[J]. Optics and Precision Engineering, 2017, 25(7): 1890-1899.
19 Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
20 Grimson W E, Hildreth E C. Digital step edges from zero crossing of second directional derivatives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(1): 121-127.
21 崔家礼, 宫贺, 王一丁, 等. 基于代数距离的椭圆拟合的优化及应用研究[J]. 计算机科学, 2014(2): 88-90.
Cui Jia-li, Gong He, Wang Yi-ding, et al. Optimization and research on ellipse fitting and application based on algebraic distance[J]. Computer Science, 2014(2): 88-90.
22 Walter Gander, Gene H, Golub Rolf Strebel. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 43: 558-578.
[1] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[2] 李景彬,杨禹锟,温宝琴,坎杂,孙雯,杨朔. 基于根茬检测的秋后残膜回收导航路径提取方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1528-1539.
[3] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[4] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[5] 张飞, 单忠德, 任永新, 聂军刚, 刘丰. 缸盖缺陷检测系统线阵相机现场标定方法[J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[6] 周晓东, 张雅超, 谭庆昌, 张维君. 基于结构光视觉技术的圆柱度测量新方法[J]. 吉林大学学报(工学版), 2017, 47(2): 524-529.
[7] 张波,王文军,魏民国,成波. 基于机器视觉的驾驶人使用手持电话行为检测[J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[8] 张保华, 黄文倩, 李江波, 赵春江, 刘成良, 黄丹枫. 基于I-RELIEF和SVM的畸形马铃薯在线分选[J]. 吉林大学学报(工学版), 2014, 44(6): 1811-1817.
[9] 刘长英1, 蔡文静1, 王天皓2, 李机智1, 贾艳梅1, 宋玉河1. 汽车连杆裂解槽视觉检测技术[J]. 吉林大学学报(工学版), 2014, 44(4): 1076-1080.
[10] 万川, 田彦涛, 刘帅师, 陈宏伟. 基于主动机器视觉的人脸跟踪与表情识别系统[J]. 吉林大学学报(工学版), 2013, 43(02): 459-465.
[11] 王殿海, 陶鹏飞, 金盛, 马东方. 跟驰模型参数标定及验证方法[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 59-65.
[12] 赵丁选, 崔玉鑫, 龚捷, 倪涛, 侯敬巍, 赵颖, 王超飞. 基于机器视觉的运动目标跟踪及位置检测方法[J]. 吉林大学学报(工学版), 2010, 40(增刊): 257-0261.
[13] 孟祥艳, 孙永海, 王笑丹, 李志, 胡铁军, 何兵. 牛胴体眼肌切面分级特征的提取与分析[J]. 吉林大学学报(工学版), 2010, 40(02): 485-0490.
[14] 王红睿, 田彦涛, 顾庆. 变光照环境中的数字摄像机参数自适应调整算法[J]. 吉林大学学报(工学版), 2009, 39(05): 1262-1267.
[15] 李伟,康晴晴,张俊雄,荀一 . 基于机器视觉的苹果表面纹理检测方法[J]. 吉林大学学报(工学版), 2008, 38(05): 1110-1113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!