吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2502-2510.doi: 10.13229/j.cnki.jdxbgxb.20221405

• 材料科学与工程 • 上一篇    下一篇

混凝土加强波纹钢组合板抗弯刚度及承载能力

刘保东1(),李芳1,王晓溪1,高猛2   

  1. 1.北京交通大学 土木建筑工程学院,北京 100044
    2.山东省交通规划设计院集团有限公司,济南 250031
  • 收稿日期:2022-09-12 出版日期:2024-09-01 发布日期:2024-10-28
  • 作者简介:刘保东(1967-),男,教授,博士.研究方向:波纹钢-混凝土组合结构.E-mail:bdliu@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478030);齐鲁交通发展集团有限公司科技项目(KJ-2019-QLJTJT-01)

Flexural stiffness and bearing capacity of corrugated steel plate composite structures reinforced by concrete

Bao-dong LIU1(),Fang LI1,Xiao-xi WANG1,Meng GAO2   

  1. 1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.Shandong Provincial Communication Planning and Design Institute Group Co. ,Ltd. ,Jinan 250031,China
  • Received:2022-09-12 Online:2024-09-01 Published:2024-10-28

摘要:

为了增强单层波纹钢板(CSP)的承载能力,在波纹钢板上焊接栓钉作为剪力连接件,然后在波纹钢板上浇筑混凝土层,二者共同受力。对3块混凝土加强波纹钢板组合构件进行了静力加载,分析了不同混凝土厚度对构件受力性能的影响,并验证了焊接栓钉作为剪力连接件的可靠性。试验结果表明:相较于单层波纹钢板,组合板的承载能力提高了60%~111%,并且其抗弯刚度是单层波纹钢板的4倍以上。基于波纹钢板-混凝土(CSPC)组合板的受力性能,提出了适用于波纹钢组合板弯曲刚度的计算方法。随后通过ABAQUS软件建立了数值模型并验证了其可靠性。本文研究结果为混凝土加强波纹钢组合结构在大跨桥涵中的应用提供了设计参考。

关键词: 桥涵工程, 组合结构, 波纹钢板, 受弯性能

Abstract:

In order to enhance the load-bearing capacity of single-layer corrugated steel plates (CSP), bolts were welded on the CSP as shear connectors, and then a concrete layer was poured on the CSP to jointly bear the force. Three concrete-reinforced corrugated steel plate assemblies were statically loaded to analyze the effect of different concrete thicknesses on the force behavior of the structure, which verified the reliability of welded studs as shear connectors. The test results show that compared with a single corrugated steel plate, the load-bearing capacity of the composite slab was increased by 60%-111%, and flexural stiffness was more than 4 times. Based on the force performance of corrugated steel plate-concrete (CSPC) composite slab, the calculation method applicable to the flexural stiffness of corrugated steel composite slab was proposed. The numerical model were established in the ABAQUS software to verify the reliability. This study provides design references for the application of concrete reinforced corrugated steel composite structures in long span bridges and culverts.

Key words: bridge engineering, composite structure, corrugated steel plate, flexural behavior

中图分类号: 

  • TU398

表1

试件基本设计参数"

试件编号h/mmhc/mmb/mm横截面示意图
CSP0550600
CP111560600
CP213580600
CP3155100600

图1

试件尺寸及构造(mm)"

表2

材性试验测试结果"

种类fc /MPaEc/GPafy/MPafu/MPaEs/GPa
混凝土44.933.6
钢材444.94513.32206

图2

试验加载设备"

图3

试件测点布置图"

图4

CSPC组合板破坏形态"

表3

波纹钢板-混凝土组合板主要试验结果"

试件编号Ps/kNPu/kNMu/(kN?m-1Mp/(kN?m-1Mu / Mpεc/10-3εsc/10-3εst/10-3
CSP099.0019.8019.131.04
CP1107.59158.9631.7948.560.65-1.67-1.352.46
CP2100.46185.9637.1962.320.60-1.77-2.284.82
CP3171.71209.4741.8965.000.64-1.09-1.342.46

图5

试件荷载-跨中挠度曲线"

图6

试件荷载-应变关系"

图7

跨中混凝土顶部荷载-应变关系对比"

图8

组合板正截面示意图"

图9

抗弯刚度理论计算值与实测值对比"

图10

荷载-跨中位移曲线模拟与实测对比"

图11

各参数变化时组合板荷载-挠度曲线"

1 Maleska T, Beben D. Numerical analysis of a soil-steel bridge during backfilling using various shell models[J]. Engineering Structures, 2019, 196: 1-12.
2 Gomes N, Shahrooz B, Sanders D, et al. Experimental and analytical evaluation of an innovative strengthening system for long-span deep corrugated buried bridges[J]. Practice Periodical on Structural Design and Construction, 2020, 25(4): No.4020026.
3 Flener E B, Karoumi R. Dynamic testing of a soil–steel composite railway bridge[J]. Engineering Structures, 2009, 31(12): 2803-2811.
4 Beben D. Dynamic amplification factors of corrugated steel plate culverts[J]. Engineering Structures, 2013(46): 193-264.
5 Inc Fixon.Corrugated steel plate[EB/OL]. [2022-09-03].
6 Oh H S, Lee J W, Jun B J. An experimental assessment on the structural behavior of bolt connected deep corrugated steel plate[J]. Journal of the Korea Institute for Structural Maintenance & Inspection, 2011, 15(3): 79-87.
7 Jeong J. Characteristics on composite structure of encased-concrete high strength deep corrugated steel plate[D]. Seoul: Civil and Environmental Engineering, Hanyang University, 2015.
8 Taesoo K. An experimental study of failue behavior on encased-concrete deep corrugated steel plate structures[D]. Seoul: Civil and Environmental Engineering, Hanyang University, 2009.
9 Taesung K. Structural behaviour of corrugated steel plate composite structures reinforced by concrete beam[D]. Seoul: Civil and Environmental Engineering,Hanyang University, 2010.
10 Kim Y, Oh H. An experimental study on flexural strength of deep corrugated steel plate composite members by steel grade and reinforcement method[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2017, 21(2): 1-12.
11 Hongseob O. Verification of compressive and flexural behavior of corrugated steel plates composite section with SFRC[J]. Korean Society of Hazard Mitigation. 2019, 19(1): 231-239.
12 Hongseob O. Verification on the axial and flexural plastic resistance analysis of unconfined corrugate steel sheet and concrete composite section[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2022, 26(3):1-10.
13 Zhang J L, Liu B D, Zhang P Y, et al. Small-scale test and analysis of corrugated-steel-plate–concrete composite member adopting novel shear connectors[J]. Engineering Structures,2019, 184: 369-383.
14 Liu B, Zhang Z, Zhang M, et al. Experimental study of the mechanical performance of corrugated steel plate–concrete composite structures[J]. International Journal of Steel Structures, 2019,19(3): 733-746.
15 贺文涛.波纹钢-橡胶混凝土组合桥面板力学性能试验研究[D].北京: 北京交通大学土木建筑工程学院,2020.
He Wen-tao. Experimental study on mechanical properties of corrugated steel plate and rubber concrete composite deck[D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2020.
16 周小淇,黄俊,李海光.波纹钢板-混凝土组合梁的力学性能研究[J].地下空间与工程学报,2020,16(增2): 656-663.
Zhou Xiao-qi, Huang Jun, Li Hai-guang. Analysis on the mechanical property of the corrugated steel-concrete composite beam[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Sup.2): 656-663.
17 Holmes N, Dunne K, O'Donnell J. Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings[J] Construction and Building Materials, 2014;55: 365-378.
18 聂建国,易卫华,雷丽英.闭口型压型钢板-混凝土组合板的刚度计算[J].工业建筑, 2003, 33(12):19-21.
Nie Jian-guo, Yi Wei-hua, Lei Li-ying. Rigidity calculation of closed profiled sheeting-concrete composite slabs[J]. Industrial Construction, 2003, 33(12):19-21.
19 Yang Y, Liu R, Huo X, et al. Static experiment on mechanical behavior of innovative flat steel plate-concrete composite slabs[J]. International Journal of Steel Structures, 2018, 18: 473-485.
20 . 钢结构设计标准 [S].
21 Zhang J L, Liu B D, Liu R. Behavior of sinusoidal-corrugated-steel-plate-concrete composite slabs: experimental investigation and theoretical model development[J]. Journal of Constructional Steel Research, 2021, 187: No. 106958.
[1] 张艳青,吕宇宣,韩石,尤龙飞,曾俊,侯飞阳. 管幕预筑结构构件受弯性能试验[J]. 吉林大学学报(工学版), 2023, 53(5): 1390-1399.
[2] 陈俊,王韶纤,胥卉,莫端泉,霍静思,邓旭华. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 604-614.
[3] 宫亚峰,王博,谭国金,张立敏,吴文丁,毕海鹏. 吉林省两种典型装配式箱涵受力特性对比分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1865-1870.
[4] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[5] 刘寒冰,刘天明,张云龙. 钢-混凝土组合连续梁抗弯性能[J]. 吉林大学学报(工学版), 2009, 39(06): 1486-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[5] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[6] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[7] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[8] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[9] 唐新星,赵丁选,黄海东,艾学忠,冯石柱 . 改进的工程机器人立体视觉标定方法[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[10] 李雪霞,冯久超 . 一种基于逆向迭代的非相干检测的]混沌数字通信方案[J]. 吉林大学学报(工学版), 2007, 37(01): 202 -205 .