吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1780-1787.doi: 10.13229/j.cnki.jdxbgxb.20230811

• 通信与控制工程 • 上一篇    下一篇

车载通信系统电磁兼容性评估模型构建与分析

张光硕1(),张世巍2,秦阳榛1,乌扶临1,姜博1,路宏敏1()   

  1. 1.西安电子科技大学 电子工程学院,西安 710071
    2.中国北方车辆研究所,北京 100072
  • 收稿日期:2023-08-03 出版日期:2025-05-01 发布日期:2025-07-18
  • 通讯作者: 路宏敏 E-mail:zhangguangshuoemc@stu.xidian.edu.cn;hmlu@mail.xidian.edu.cn
  • 作者简介:张光硕(1990-),男,博士研究生. 研究方向:电磁场与微波技术,电磁兼容.E-mail: zhangguangshuoemc@stu.xidian.edu.cn
  • 基金资助:
    国防型研项目(JZX7X201901JY0048)

Construction and analysis of the electromagnetic compatibility evaluation model for vehicular communication systems

Guang-shuo ZHANG1(),Shi-wei ZHANG2,Yang-zhen Qin1,Fu-lin WU1,Bo JIANG1,Hong-min LU1()   

  1. 1.School of Electronic Engineering,Xidian University,Xi'an 710071,China
    2.China North Vehicle Research Institute,Beijing 100072,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18
  • Contact: Hong-min LU E-mail:zhangguangshuoemc@stu.xidian.edu.cn;hmlu@mail.xidian.edu.cn

摘要:

针对现有无线通信系统电磁兼容性(EMC)评估方法或模型的局限性,以及车载通信系统的实际需求,考虑车载通信系统EMC评估的完整性与准确性,构建了一种涉及工作环境、信号频谱、接收机灵敏度、天线隔离度和通信性能因素的五级评估模型。以某装甲车辆车载通信系统为例的验证实验表明,该模型能够评估车载电台工作环境和信号频谱间是否存在干扰;接收机灵敏度下降的计算误差为5.8%;车载天线隔离度的计算值与实测值吻合良好;仿真分析了车载数字通信系统性能较优的调制模式和编码模式,接收机灵敏度减小6 dB时,车辆通信距离下降50%。仿真结果和实测结果表明,模型适用于装甲车辆车载通信系统的EMC评估。

关键词: 电磁场与微波技术, 装甲车辆, 无线通信系统, 电磁兼容性, 评估模型

Abstract:

Aiming at the limitations of existed electromagnetic compatibility (EMC) evaluation methods or models for wireless communication systems and the actual needs of vehicular communication systems, a five-level novel evaluation model including working environment, signal spectrum, receiver sensitivity, antenna isolation and communication performance is constructed considering the completeness and accuracy of EMC evaluation for vehicular communication systems. The performance of the constructed model is validated using the vehicular communication system of an armored vehicle as an example. The model can evaluate whether there is interference between the working environment and the signal spectrum of the vehicle-mounted radio station. The error in the reduction of the receiver sensitivity between calculation and measurement is 5.8%. The calculated isolation of the vehicle-mounted antenna is in good agreement with the measurements. The modulation mode and coding mode of the vehicle-mounted digital communication system with better performance are simulated and analyzed. When the receiver sensitivity is reduced by 6 dB, the vehicle communication distance is reduced by 50%. The simulation and measurement results show that the proposed model is suitable for the evaluation of EMC of vehicular communication systems for armored vehicles.

Key words: electromagnetic fields and microwave technology, armored vehicle, wireless communication system, electromagnetic compatibility, evaluation model

中图分类号: 

  • U463.67

图1

评估模型流程"

图2

车辆通信传播示意图"

表1

天线极化失配损耗"

接收天线水平极化垂直极化圆极化
G<10 dBG≥10 dBG<10 dBG≥10 dB

水平

极化

G<10 dB00-16-16-3
G≥10 dB00-16-20-3

垂直

极化

G<10 dB-16-1600-3
G≥10 dB-16-2000-3
圆极化-3-3-3-30

表2

不同调制类型误码率"

调制方式相干解调非相干解调
2ASK12erfcSNR212e-SNR4
2FSK12erfcSNR212e-SNR2
2PSK12erfc(SNR)
2DPSKerfc(SNR)12e-SNR

表3

一号车辆电台参数和性能指标"

1号短波电台(HF1)2号超短波电台(VHF2)3号超短波电台(VHF3)性能指标

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

15

50

3

1.5

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

45

50

10

1.5

工作状态

工作频率/MHz

灵敏度/dBm

带宽/MHz

驻波比

接收

53

-116

15

1.5

通信距离/km

天线隔离度/dB

灵敏度下降/dB

15~30

20

6

天线增益/dB

天线极化方式

1

垂直极化

天线增益/dB

天线极化方式

1

水平极化

天线增益/dB

天线极化方式

1

垂直极化

表4

二号车辆电台参数"

4号超短波电台(VHF4)5号短波电台(HF5)

工作状态

工作频率/MHz

发射功率/W

带宽/MHz

驻波比

发射

80

50

17

1.5

工作状态

工作频率/MHz

灵敏度/dBm

带宽/MHz

驻波比

接收

11

-107

3

1.5

天线增益/dB

天线极化方式

1

垂直极化

天线增益/dB

天线极化方式

1

垂直极化

表5

一级评估计算结果"

收发对FIMTIMRIMSIM
HF1和VHF3不存在存在存在存在
VHF2和VHF3存在存在存在存在

表6

二级评估计算结果"

收发对

基波信号

干扰

谐波信号

干扰

互调信号

干扰

HF1和VHF3不存在存在
VHF2和VHF3存在不存在
HF1、VHF2和VHF3存在

图3

接收机VHF3接收的实际功率"

图4

接收机VHF3灵敏度减小量"

图5

天线隔离度实测值和计算值对比"

图6

接收机VHF3灵敏度减小量和通信距离下降的关系"

表7

各类型数字信号误码率限值"

信号类型误码率限值要求
音频Pe10-3
图像Pe10-5
视频Pe10-6

图7

通信链路仿真模型"

图8

误码率与信噪比的关系"

[1] Wang K B, Lu H M, Chen C C, et al. Modeling of system-level conducted EMI of the high-voltage electric drive system in electric vehicles[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3): 741-749.
[2] Wang K B, Lu H M, Li X J, et al. High-frequency modeling of the high-voltage electric drive system for conducted EMI simulation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2808-2819.
[3] Qian W W, Yang Y L, Peng J H, et al. EMI modeling for vehicle body using characteristic mode analysis[C]∥2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 2022: 732-734.
[4] 赵晓凡. 新能源车高压电驱动系统电磁兼容关键技术[J]. 安全与电磁兼容, 2018(5): 9-10.
Zhao Xiao-fan. Key EMC technologies for high-voltage electrical drive system of new energy vehicle[J]. Safety & EMC, 2018(5): 9-10.
[5] Konstantinos P. Research on EMI from modern electric vehicles and their recharging systems[C]∥2020 International Symposium on Electromagnetic Compatibility, Rome, Italy, 2020: 1-6.
[6] 系统电磁环境效应试验方法 [S].
[7] Alain A. EMC performances of a land army vehicle to respect integrated radios reception sensitivity: typical performances needed for "fitted for radio (ffr)" land vehicle[C]∥International Symposium on Electromagnetic Compatibility, Los Angeles, USA, 2018: 303-308.
[8] Zhao T, Liu X M, Sun P, et al. EMC vehicle-level layout design for railway vehicles in complex electromagnetic environment[C]∥11th International Conference on Information Technology in Medicine and Education, Wuyishan, China, 2021: 231-236.
[9] 赵晓凡. 基于功能安全的电磁兼容及防护技术[J]. 微波学报, 2018, 34(): 406-409.
Zhao Xiao-fan. Electromagnetic compatibility and protection technology based on functional safety[J]. Journal of Microwaves, 2018, 34(Sup.2): 406-409.
[10] Zhang P C, Sun Y T, Leung H, et al. A novel approach for qos prediction based on bayesian combinational model[J]. China Communications, 2016, 13(11): 269-280.
[11] Marc P, Marco A, Ferran S. Measurement and evaluation techniques to estimate the degradation produced by the radiated transients interference to the GSM system[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1382-1390.
[12] 张世巍,赵晓凡. 军用车辆外部射频干扰试验测试技术研究[J]. 宇航计测技术, 2016, 36(1): 7-13.
Zhang Shi-wei, Zhao Xiao-fan. Research of external rf immunity test technique for military vehicles[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(1): 7-13.
[13] 赵家升, 杨显清, 杨德强. 电磁兼容原理与技术[M]. 北京: 电子工业出版社, 2012.
[14] Zhou P, Lv Y H, Chen Z H, et al. System-level EMC assessment for military vehicular communication systems based on a modified four-level assessment model[J]. China Communications, 2018, 15(8): 39-53.
[15] 李修和. 战场电磁环境建模与仿真[M]. 北京: 国防工业出版社, 2014.
[16] 路宏敏, 余志勇, 李万玉. 工程电磁兼容[M]. 西安: 西安电子科技大学出版社, 2019.
[17] 武南开, 苏东林, 何洪涛, 等. 机载超短波电台邻道干扰减敏特性建模与评估[J]. 北京航空航天大学学报, 2017, 43(3): 481-487.
Wu Nan-kai, Su Dong-lin, He Hong-tao, et al. Modeling and evaluation of adjacent channel interference desensitization characteristics of airborne ultra-short wave radio [J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(3): 481-487.
[18] ITU-R P. The concept of transmission loss for radio links: 341-7[Z]. Geneva: International Telecommunication Union-Radiocommunication Sector, 2019.
[19] Malmstrom J, Frid H, Jonsson B L G, et al. Approximate methods to determine the isolation between antennas on vehicles[C]∥2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Okinawa, Japan, 2016: 131-132.
[20] 张光硕. 装甲车车载天线系统电磁兼容分析[D]. 西安:西安电子科技大学电子工程学院, 2015.
Zhang Guang-shuo. Electromagnetic compatibility analysis of vehicle antenna system of armored vehicle [D]. Xi'an: School of Electronic Engineering, Xidian University, 2015.
[21] 军用无线电台车通用规范 [S].
[22] 通信设备话音质量与等级标准与评测方法 [S].
[1] 惠冰,刘伟,周宇坤,李淑琪. 强侧风作用下桥隧连接段行车仿真与安全性分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2312-2320.
[2] 赵昱,霍亚飞. 强电磁脉冲下车辆线束快速等效方法[J]. 吉林大学学报(工学版), 2019, 49(3): 1009-1016.
[3] 杨诚, 宋萍, 彭文家, 金昊龙, 潘志强. 基于混合总线的装甲车辆实车综合测试系统设计[J]. 吉林大学学报(工学版), 2018, 48(1): 186-198.
[4] 杨诚, 宋萍, 彭文家, 邓高寿, 刘雄军. 装甲车辆综合测试系统上位机平台设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1796-1803.
[5] 田丽媛,王庆年,王鹏宇. 双电机混合动力系统FlexRay网络开发[J]. 吉林大学学报(工学版), 2014, 44(3): 585-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晓乐, 孟庆繁, 王贞佐, 苏维彪, 朱凯, 高海鹰, 滕利荣. 林蛙抗菌肽凝胶剂的制备及抑菌试验[J]. 吉林大学学报(工学版), 2006, 36(01): 133 -0136 .
[2] 王云开,于秀敏,梁金广,张丽,陶云飞 . 电控柴油机冷起动过程的控制策略[J]. 吉林大学学报(工学版), 2008, 38(01): 27 -031 .
[3] 张军,王彪,肖余之 . 磁记忆与小波变换相结合的井下套管
应力集中早期诊断方法
[J]. 吉林大学学报(工学版), 2007, 37(02): 469 -0473 .
[4] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] 孙恩昌,田斌,张冬英,易克初 . 空间相关信道下STBC-QOTDM性能分析[J]. 吉林大学学报(工学版), 2009, 39(02): 514 -0518 .
[6] 张立明, 赵剑, 赵相福, 欧阳丹彤, 白岩. 基 于 因 果 关 系 的 模 型 诊 断[J]. 吉林大学学报(工学版), 2009, 39(04): 1052 -1056 .
[7] 卢延辉,王文阁,郑联珠 . 疲劳可靠性计算方法中迈纳理论与概率
累加理论之间的关系
[J]. 吉林大学学报(工学版), 2007, 37(02): 382 -0385 .
[8] 陈晨,黄渐强,吕默,党敬民,王一丁. 高精度纳秒级红外量子级联激光器驱动电源[J]. 吉林大学学报(工学版), 2011, 41(6): 1738 -1742 .
[9] 马龙, 王鲁平, 李飚, 陈小天. 基于像素筛选技术的光流估计方法[J]. , 2012, 42(04): 979 -984 .
[10] 刘衍珩, 周鹏, 王健, 邓钧忆. 用于车载网络的自适应情境感知中间件[J]. 吉林大学学报(工学版), 2013, 43(02): 410 -416 .