吉林大学学报(工学版) ›› 2004, Vol. ›› Issue (3): 392-396.

• 论文 • 上一篇    下一篇

激光熔覆纳米Al2O3的粉末冶金件的表面组织

刘燕1, 于思荣2, 任露泉1   

  1. 1. 吉林大学 地面机械仿生技术教育部重点实验室, 吉林 长春 130022;
    2. 吉林大学 材料科学与工程学院, 吉林 长春 130022
  • 收稿日期:2003-12-24 出版日期:2004-07-01
  • 通讯作者: 任露泉(1944- )男,教授,博士生导师.E-mail:lqren@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划资助项目(20020329);国家重大基础研究前期研究专项资助项目(2002CCA01200)

Microstructure of powder metallurgy material surface layer modified by laser cladding nano-Al2O3

LIU Yan1, YU Sirong2, REN Luquan1   

  1. 1. Key Laboratory for Terrain-Machine Bionics Engineering, Ministry of Education, of Education, Jilin University, Changchun 130022, China;
    2. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2003-12-24 Online:2004-07-01

摘要: 运用纳米Al2O3作为粉末冶金件的表面改性材料,通过激光熔覆试验对粉末冶金件进行了表面改性。分析了激光熔覆的凝固过程,运用金相显微镜和扫描电镜对粉末冶金材料的表面改性层组织进行了观察,并对改性层不同组织的形成因素进行了研究。结果表明:熔覆后材料组织分为熔覆层区、界面结合区、基体区。从熔覆层到基体密度呈现由密向疏变化。激光熔覆组织主要受涂层成分及含量、工艺参数、形状控制因子G/υ(温度梯度/凝固速度)的影响,而形状控制因子又决定于工艺参数。当光带矩形光斑尺寸为15mm×2mm时,最佳功率为2.5kW,最佳扫描速度为90mm/min。

关键词: 材料表面与界面, 激光熔覆, 粉末冶金, 纳米Al2O3, 表面改性, 组织

Abstract: The nano-Al2O3 and the laser cladding were chosen respectively to serve as the surface modification material and processing technology for the powder metallurgy pieces. The solidification process of the laser cladding layer was investigated and the microstructure of the modification layer was observed by means of the metallograph and SEM. The factors affecting the formation of the different structures of the modification layer were studied. The observed microstucture can be divided into 3 zones, i.e., the cladding zone, the transition zone, and the base body zone, their densities decrease gradually from the cladding zone to the base body. The microstructure of the laser cladding surface is affected by the composition and the content of the coating, processing parameters and the shape factor G/υ(temperature gradient/solidification rate) which itself is decided by the processing parameters. When the sizes of the rectangular laser spot are 15 mm×2 mm,the optimal power is 2.5 kW, and the optimal scanning speed is 90 mm/min.

Key words: material surface and interface, process of laser cladding, powder metallurgy, nano-Al2O3, surface modification, microstructure

中图分类号: 

  • TG174.4
[1] 任露泉,丛茜,佟金.界面粘附系统中非光滑表面基本特征的研究[J].农业工程学报,1992,8(1):16-22.REN Luquan, CONG Qian, TONG Jin. Research on character of non-smooth surface in interface adhesion system[J].Transactions of CSAE, 1992,8(1):16-22.
[2] 张维平,刘文艳.激光熔覆陶瓷涂层综述[J].表面技术,2001,30(4):30-33.ZHANG Weiping, LIU Wenyan. Process of laser cladding about ceramic coating[J]. Surface Technology,2001,30(4):30-33
[3] 任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001.REN Luquan. Optimized Design and Analysis of Experiments[M]. Changchun:Jilin Science and Technology Publishing House, 2001.
[4] 郑世安,张一民,马云庆,黄金亮.激光熔覆合金层的组织结构和凝固过程[J].钢铁研究学报,1996,8(4):46-51.ZHENG Shian, ZHANG Yimin, MA Yunqing, HUANG Jinliang. Microstructure and solidification process of laser remelted alloy coatings[J]. Journal of Iron and Steel Research, 1996,8(4):46-51.
[5] 王新林,石世宏,郑启光.激光熔覆层凝固特征与凝固组织控制研究[J].应用激光,2001,21(3):164-167.WANG Xinlin, SHI Shihong, ZHEN Qiguang. Study on solidification feature and the solidification microstructure of laser cladding layer[J]. Applied Laser,2001,21(3):164-167
[6] NICOLAS G, YANEZ A, RAMIL A, ALVAREZ J C, SAAVEDRA E, GARCIA Beltran A, MOLPECERES C,AUTRIC M, OCANA J L. UV laser surface processing of metallic alloys:comparison of experimental and numerical results[J]. Applied Surface Science, 1999,138-139:169-173.
[7] 陈传忠,王文中,张建新,雷廷权,彭其凤.45钢表面激光熔覆Al2O3陶瓷涂层的研究[J].金属学报,1999,35(9):989-994.CHEN Chuanzhong, WANG Wenzhong, ZHANG Jianxin, LEI Tingquan, PENG Qifeng. Study on laser cladding A12O3ceramic coating on 45 steel[J]. ACTA Metallurgica Sinica, 1999,35(9):989-994
[8] 陈传忠,王佃刚,雷廷权.激光熔覆陶瓷及其复合涂层的组织特征[J].激光技术,2001,25(6):401-405.CHEN Chuanzhong, WANG Diangang, LEI Tingquan. Structure characteristics of laser clad ceramic and its composite costings[J]. Laser Technology,2001,25(6):401-405.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 郑孝义, 孙大千, 李欣, 都桂刚, 辛伟达, 任振安. NbAl3强化Al-Nb熔覆层的组织与性能[J]. 吉林大学学报(工学版), 2018, 48(5): 1531-1536.
[3] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[4] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[5] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[6] 金敬福, 李杨, 陈廷坤, 丛茜, 齐迎春. 涂层弹性模量对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553.
[7] 赵学彧, 杨家其, 彭亚美. 城市轨道交通与地面公交竞合关系演化机制[J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[8] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[9] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511-515.
[10] 杨慧艳, 何晓聪, 周森. 压印接头强度的有限元模型及理论计算方法[J]. 吉林大学学报(工学版), 2015, 45(3): 864-871.
[11] 李欣,王刚,陆冠含,谷诤巍,徐虹. 22MnB5热成形钢板钨极氩弧焊接性能[J]. 吉林大学学报(工学版), 2014, 44(3): 708-711.
[12] 吕梦雅, 韩育芳, 唐勇. 虚拟手术中缝合过程的相关技术[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 16-20.
[13] 安如, 王慧麟, 王盈, 陈春烨, 张琴, 徐晓峰. 16阶归一化互信息和改进PSO算法的快速图像匹配[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 357-364.
[14] 曹敏, 陈廷坤, 丛茜, 金敬福. 表面形态对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2013, 43(05): 1314-1319.
[15] 段珍珍, 罗梦, 朱松, 邱小明. 钛表面处理对增强钛/瓷结合强度的影响[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 202-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!