吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (01): 207-212.

• 论文 • 上一篇    下一篇

基于粒子群优化的协作网络资源分配的博弈策略

丛犁1, 张海林1, 刘毅1, 赵力强1, 张国鹏2   

  1. 1. 西安电子科技大学 综合业务网国家重点实验室,西安 710071;
    2. 中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
  • 收稿日期:2010-07-26 出版日期:2012-01-01 发布日期:2012-01-01
  • 作者简介:丛犁 (1984-),女,博士研究生.研究方向:基于博弈论的无线网络资源管理. E-mail:congli8462@163.com
  • 基金资助:

    国家自然科学基金项目(60772317); 高等学校创新引智计划项目(B08038);综合业务网国家重点实验室专项基金项目(ISN090105);新世纪优秀人才支持计划项目(NCET-08-0810);中央高校基本科研业务费专项项目(72105377).

Particle swarm optimized game theory for resource allocation in cooperative networks

CONG Li1, ZHANG Hai-lin1, LIU Yi1, ZHAO Li-qiang1, ZHANG Guo-peng2   

  1. 1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China;
    2. School of Computer Science and Technology, University of Mining and Technology, Xuzhou 221116, China
  • Received:2010-07-26 Online:2012-01-01 Published:2012-01-01

摘要:

应用基于竞价机制的斯坦克尔伯格博弈提出协作中继网络中的一种资源分配策略,用以解决单一中继节点对多用户节点协作带宽的分配问题。首先中继根据用户的协作带宽需求对资源定价,然后用户根据价格调整其纳什均衡策略,即获取协作效用最大化的最优带宽购买量。证明了纳什均衡的存在性,提出基于粒子群优化的均衡求解算法,分析了均衡的有效性,仿真给出了粒子群优化的全局最优带宽分配结果。仿真结果表明,所提出的博弈可以激励中继节点参与协作,并协调多用户节点间的资源分配。

关键词: 通信技术, 资源分配, 协作中继, 博弈论, 粒子群优化

Abstract:

A pricing-based Stackelberg game was proposed to perform resource allocation between a relay and multiple user nodes in cooperative relay networks. First, the relay node prices the cooperative bandwidth according to the demand of the user nodes. Then, with the price, the user nodes can adjust their Nash Equilibrium (NE), i.e. the amount of the optimal bandwidth purchase, to maximize their benefits. The existence of the NE solution was proved. A particle swarm optimization (PSO) algorithm was performed to search for the NE solution, and the efficiency of the obtained NE was analyzed. A global optimal bandwidth allocation solution was given by simulation through the PSO algorithm. Results show that the proposed game can simulate cooperation of the relay node and coordinate the resource allocation among the user nodes.

Key words: communication, resource allocation, cooperative relay, game theory, particle swarm optimization (PSO)

中图分类号: 

  • TN915


[1] Laneman J N, Tse D N C, Wornell G W. Cooperativediversity in wireless networks: efficient protocols and outage behavior
[J]. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080.

[2] Herhold P, Zimmermann E, Fettweis G. Cooperative multi-hop transmission in wireless networks
[J]. Computer Networks, 2005, 49(3): 299-324.

[3] Hunter T E, Nosratinia A. Cooperative diversity through coding//IEEE International Symposium on Information Theory, Lausanne, Switzerland: IEEE, 2002:220.

[4] 张维迎. 博弈论与信息经济学
[M].上海:上海人民出版社,2007.

[5] Zhang Z Y, Chen H H, Guizani M, et al. A cooperation strategy based on Nash bargaining solution in cooperative relay networks
[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4):2570-2577.

[6] Wang B B, Han Z, Liu K J R. Distributed relay selection and power control for multiuser cooperative communication networks using Buyer/Seller game//IEEE INFOCOM, Anchorage, Alaska, USA: IEEE, 2007: 544-552.

[7] Zhang G P, Cong L, Zhao L Q, et al. Competitive resource sharing based on game theory in cooperative relay networks
[J]. ETRI Journal, 2009, 31(1):89-91.

[8] Niyato D, Hossain E. Competitive spectrum sharing in cognitive radio networks: a dynamic game approach
[J]. IEEE Transactions on Wireless Communications, 2008, 7(7): 2651-2660.

[9] Saraydar C U, Mandayam N B, Goodman D J. Efficient power control via pricing in wireless data networks
[J]. IEEE Transactions on Communications, 2002, 50(2): 291-303.

[10] Shi Y, Eberhart R C. A modified particle swarm optimizer//Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,USA: IEEE, 1998: 69-73.

[11] Niyato D, Hossain E. Competitive pricing for spectrum sharing in congnitive radio networks: dynamic game, inefficiency of Nash equilibrium, and collusion
[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 192-202.

[1] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[2] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[3] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[4] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[5] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[6] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[7] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[8] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[9] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[10] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[11] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[12] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[13] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[14] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[15] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!