›› 2012, Vol. 42 ›› Issue (05): 1273-1279.

• 论文 • 上一篇    下一篇

时频降噪在图像序列事件检测中的应用

伍健荣1, 李隽颖1, 刘海涛1,2   

  1. 1. 中国科学院 上海微系统与信息技术研究所 无线传感器网络与通信重点实验室,上海 200050;
    2. 无锡物联网产业研究院,江苏 无锡 214135
  • 收稿日期:2011-07-04 出版日期:2012-09-01 发布日期:2012-09-01
  • 基金资助:
    江苏省自然科学基金项目(BK2011035);国家科技重大专项项目(2010ZX03006-004);"973"国家重点基础研究发展规划项目(2011CB302906).

Temporal-frequency denoising application in event detection base on image sequences

WU Jian-rong1, LI Jun-ying1, LIU Hai-tao1,2   

  1. 1. Key Lab of Wireless Sensor Network and Communications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China;
    2. Wuxi SensingNet Industrialization Research Institute, Wuxi 214135, China
  • Received:2011-07-04 Online:2012-09-01 Published:2012-09-01

摘要: 针对图像序列分析中事件检测在强背景噪声的野外应用场景下经常出现"假事件"检测的问题,利用Kalman滤波器与二维DCT滤波思想,提出了基于图像序列时频降噪的事件检测方法。该方法基于Kalman滤波器对图像序列进行背景模型的时域多帧降噪,并结合变化前景区域实现背景模型的自适应重构,对单帧前景图像应用二维DCT变换实现低通降噪,最后由自适应分割方法实现事件前景的分割。通过对实际采集的野外图像序列的仿真分析表明,该方法较好地克服了"假事件"检测的问题,并更好地保持了真实事件信息,其F-measure达0.9423,具有很好的实用性与鲁棒性。

关键词: 计算机应用, 事件检测, Kalman滤波器, 二维DCT变换

Abstract: To solve the "false event" detection problem in image sequence analysis in the wild situation with strong background noises, an event detection method based on temporal-frequency denoising is proposed utilizing Kalman filter theory and 2D Discrete Cosine Transform (DCT) theory. The method utilizes Kalman filter to denoise the background model of image sequence with several frames in time domain. The background model is reconstructed adaptively based on variational foreground region. Then, the foreground image of a single frame is denoised utilizing 2D DCT transform. Finally, the event foreground is segmented by adaptive segmentation method. Based on the results of simulation analysis of image sequences collected in wild situation, the proposed method is proved to detect the event foreground and solve the "false event" detection problem effectively and practically, while its F-measure can achieve 0.9423.

Key words: computer application, event detection, kalman filter, 2D DCT

中图分类号: 

  • TP277
[1] Maybank S,Tan T. Introduction-special section on visual surveillance[J]. International Journal of Computer Vision,2000,37 (2):173.
[2] Haritaoglu I, Harwood D, Davis L W. Real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 (8): 809-830.
[3] 宫晓燕, 汤淑明. 基于非参数回归的短时交通流量预测与事件检测综合算法[J]. 中国公路学报, 2003, 16(1): 82-86. Gong Xiao-yan, Tang Shu-ming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-param etric regression[J]. China Journal of Highway and Transport, 2003, 16(1): 82-86.
[4] 王亮, 胡卫明, 谭铁牛. 人运动的视觉分析综述[J]. 计算机学报, 2002, 25(3): 225-237. Wang Liang, Hu Wei-ming, Tan Tie-niu. A survey of visual analysis of human motion[J]. Chinese Journal of Computers, 2002, 25(3): 225-237.
[5] 郝志成,朱明,刘微.复杂背景下目标的快速提取与跟踪[J]. 吉林大学学报:工学版,2006,36(2):259-263. Hao Zhi-cheng,Zhu Ming, Liu Wei.Fast extracting and tracking of target in complex environment[J].Journal of Jilin University(Engineering and Technology Edition),2006,36(2):259-263.
[6] 李志慧,张长海,曲昭伟,等.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报:工学版,2006,36(6):993-997. Li Zhi-hui,Zhang Chang-hai,Qu Zhao-wei,et al.Background extraction model and shadow detection algorithm in traffic flow video detection[J].Journal of Jilin University(Engineering and Technology Edition),2006,36(6):993-997.
[7] Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1999(2): 246-252.
[8] Karmann Klaus-Peter, Achim von Brandt. Moving object recognition using an adaptive background memory[J]. Time-varying Image Processing and Moving Object Recognition, 2, V Cappellini (ed.), Elsevier Publishers B V, Amsterdam, The Netherlands, 1990: 297-307.
[9] Kilger M. A shadow handler in a video-based real-time traffic monitoring system//Proceedings of IEEE Workshop on Applications of Computer Vision, 1992: 1060-1066.
[10] Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction//Proceedings of the 6th European Conference on Computer Vision, 2000: 751-767.
[11] Collins R, Lipton A, Kanade T. Introduction to the special section on video surveillance[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22 (8): 745-746.
[12] 任臣, 张覃平. 基于Kalman滤波理论的运动目标检测新方法[J]. 光电工程, 2007, 34(4): 7-11. Ren Chen, Zhang Qin-ping. New method for detecting of moving targets based on kalman filter theory[J]. Opto-Electronic Engineering, 2007, 34(4): 7-11.
[13] 沈宇键, 何昕, 郝志航. 图像序列中检测运动小目标的递归算法[J]. 光电工程, 2000, 27(2): 9-13. Shen Yu-jian, He Xin, Hao Zhi-hang. Small moving target in image sequence[J]. Opto-Electronic Engineering, 2000, 27(2): 9-13.
[14] Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using kalman-filtering//Proceedings of the International Conference on Recent Advances in Mechatronics, 1995:193-199.
[15] 张文强, 路 红, 陈义东等. 动态场景中的自适应背景建模研究[J]. 中国图象图形学报, 2009, 14(12): 2627-2630. Zhang Wen-qiang, Lu Hong, Chen Yi-dong, et al. Study of adaptive background modeling in nonstationary scene[J]. Journal of Image and Graphics, 2009, 14(12): 2627-2630.
[16] 林佳乙, 于哲舟, 张健,等. 基于背景差分法和帧间差分法的视频运动检测[J]. 仪器仪表学报, 2008, 29(4): 112-115. Lin Jia-yi, Yu Zhe-zhou, Zhang Jian, et al. A new moving detection method based on background differencing and coterminous frames differencing[J]. Chinese Journal of Scientific Instrument, 2008, 29(4): 112-115.
[17] Rafael C Gonzalez, Richard E Woods. 数字信号处理[M]. 2版.阮秋琦译. 北京:电子工业出版社, 2003: 445-451.
[18] 金良海, 熊才权, 李德华. 自适应型中心加权的中值滤波器[J]. 华中科技大学学报:自然科学版, 2008, 36(8): 10-12. Jin Liang-hai, Xiong Cai-quan, Li De-hua. Adaptive center-weighted median filter[J]. J Huazhong Univ of Sci & Tech(Natural Science Edition), 2008, 36(8): 10-12.
[19] White B, Shah M. Automatically tuning background subtraction parameters using particle swarm optimization//Proceedings of IEEE International Conference on Multimedia and Expo, 2007: 1826-1829.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!