›› 2012, Vol. 42 ›› Issue (05): 1286-1290.

• 论文 • 上一篇    下一篇

基于节点能耗的IEEE 802.11s路径选择优化方法

金冬成, 王珂, 冯琳函   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2011-11-09 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 王珂(1955-),男,教授,博士生导师.研究方向:图像处理,无线通信系统.E-mail:wangke@jlu.edu.cn E-mail:wangke@jlu.edu.cn
  • 基金资助:
    "863"国家高技术研究发展计划项目(2007AA12Z242).

Optimized IEEE 802.11s path selection method based on node power consumption

JIN Dong-cheng, WANG Ke, FENG Lin-han   

  1. College of Communications Engineering, Jilin University, Changchun 130012, China
  • Received:2011-11-09 Online:2012-09-01 Published:2012-09-01

摘要: 在保证服务质量的前提下对节点的发射功率进行了优化,讨论了Mesh节点的能耗模型,将节点能耗情况引入到空时参数中,将其作为路径选择时的一个重要因素,得出改进的路径选择方法。采用NS-3仿真工具建立了网络拓扑结构,将改进路径选择方法的能量消耗及包传输时延情况与改进前进行了仿真对比分析。仿真结果表明,改进方法有效降低了节点能耗,同时引入节点能耗参量并不会带来过大的传输时延,保证了用户业务的QoS。

关键词: 通信技术, 无线网状网, 节点能耗, 路径选择, 空时消耗, 功率优化

Abstract: This paper first introduces the optimization method on node transmission power based Quality of Service (QoS), and then discusses the node power consumption model. The power consumption is taken into account for the calculation of air-time metric, which is also regarded as an important factor in path selection. The improved power consumption model and packet transmission delay are simulated as the output in NS-3 network environment. It is shown that the improved method effectively reduces the node power consumption, while the introduction of power consumption parameter does not bring too much delay, thus, the user QoS requirement is ensured.

Key words: communication, wireless mesh network, node power consumption, path selection, air-time metric, power optimization

中图分类号: 

  • TP393.1
[1] Hossain E, Leung K. Wireless Mesh Network Architectures and Protocols[M]. Springer Science + Business Media, LLC, 2008.
[2] Lewis B.Mesh newtorks in fixed broaband wireless networks//IEEE C80216-03,London,England,2003.
[3] Oyman . End-to-end throughput and latency measures for multi-hop routing in relay-assisted broadband cellular OFDM systems//Proc IEEE Asilomar Conference on Signals, Systems and Computers, Long Beach, CA, 2007.
[4] Oyman . Reliability bounds for delay-constrained multi-hop networks[J]. Proc Allerton Conference on Communication, Control and Computing, Monticello, IL, 2006.
[5] IEEE P802.11sTM/D12.0. Draft STANDARD for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-part 11: wireless LAN medium Access control (MAC) and physical Layer (PHY) specifications-amendment 10: mesh networking[S].
[6] 杨凯,马建峰. 混合无线网状网路由协议[J]. 通 信学报, 2009, 30(11A): 133-139. Yang Kai, Ma Jian-feng. Hybrid wireless mesh protocol[J]. Journal on Communications, 2009, 30(11A): 133-139.
[7] 顾大刚. 802.11s中RM-AODV路径选择协议的研究[J]. 江西科学, 2010, 28(2):245-249. Gu Da-gang. Research on 802.11s RM-AODV path selection protocol[J]. Jiangxi Science, 2010, 28(2):245-249.
[8] Cao L, Dahlberg T. Path cost metrics for multi hop network routing//Proc of IEEE International Performance, Computing and Communications Conference (IPCCC 2006), Phoeni X, Arizona,2006.
[9] Wen Yao-feng, Chen Yu-quan, Pan Min. Adaptive ant-based routing in wireless sensor networks using energy delay metrics[J]. Journal of Zhejiang University Science A, 2008, 9(4):531-538.
[10] Lee Kamrok,Choi Jae Young, Kwon Wook Hyun,et al.An energy-efficient contention-based MAC protocol for wireless Ad Hoc networks//Vehicular Technology Conference, IEEE 63rd, Melbourne, 2006.
[11] Shih Kuei-Ping,Chang Chih-Yung,Chou Chien-Min, et al.A power saving MAC protocol by increasing spatial reuse for IEEE 802.11 Ad Hoc WLANs//19th International Conference on Advanced Information Networking and Applications,Taipei,Taiwan, 2005.
[12] Sikora M, Laneman J N, Haenggi M, et al. Bandwidth and power efficient routing in linear wireless networks[J]. IEEE Transaction on Information Theory,2006,52(6):2624-2633.
[13] Andreev K, Boyko P. IEEE 802.11s mesh networking NS-3 model.Moscow,Russia:Institute for Information Transmission Problems,2010.
[14] Ns-3 network simulator.http://www.nsnam.org/.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[3] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[4] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[6] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[7] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[8] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[9] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[10] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!