›› 2012, Vol. 42 ›› Issue (05): 1302-1308.

• 论文 • 上一篇    下一篇

基于含虚拟卖家组合双向拍卖的网格资源管理

刘媛, 马晓雷, 刘元安, 李保罡   

  1. 北京邮电大学 电子工程学院,北京 100876
  • 收稿日期:2011-10-28 出版日期:2012-09-01 发布日期:2012-09-01
  • 基金资助:
    国家重大科技专项项目(2010ZX03006-005-02,2011ZX03002-004-03);国家自然科学基金项目(60802033,60873190).

Grid resource management model based on combinatorial double auction with virtual seller

LIU Yuan, MA Xiao-lei, LIU Yuan-an, LI Bao-gang   

  1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2011-10-28 Online:2012-09-01 Published:2012-09-01

摘要: 考虑到组合双向拍卖与网格资源选择过程存在较高相似性,提出基于组合双向拍卖的网格资源管理方案,建立了具体的包含虚拟卖家的多回合组合双向拍卖机制。在该机制中,采用一种动态报价策略以提高拍卖交易率,同时通过引入虚拟卖家,将竞卖成功者的剩余资源转化为交易剩余,不仅提高了资源利用率,而且扩大了拍卖的交易剩余,从而促进形成良好的经济激励,使更多的网格用户和网格资源加入到网格交易中。

关键词: 计算机应用, 网格, 资源管理模型, 组合双向拍卖, 虚拟卖家, 多回合拍卖

Abstract: A grid resource Management model based on Combinatorial Double Auction with Virtual Seller (MCDA+VS) is proposed. In MCDA+VS mechanism, a dynamic bidding strategy is established to afford participants opportunities of re-bidding in different round of an auction. As a result, the transaction ratio can be effectively increased. In addition, a virtual seller is introduced and involved in each round of auctions to transform surplus resources into trade revenue. The idea of utilizing surplus resources can lead to not only higher resource utilization but also larger trade revenue. In grid environment, the improved auction performances help to establish good economic incentive, which could attract more grid users and resource providers into grid transactions.

Key words: computer application, grid, resource management model, combinatorial double auction, virtual seller, multi-round auction

中图分类号: 

  • TP393
[1] Buyya R, Abramson D, Venugopal S. The grid economy[J].Proceedings of the IEEE,2005,93(3):698-714.
[2] Bubendorfer K. Fine grained resource reservation in open grid economies//Second IEEE International Conference on e-Science and Grid Computing, Amsterdam, Netherlands, 2006.
[3] Das A, Grosu D. Combinatorial auction-based protocols for resource allocation in grids//The 19th IEEE International Parallel and Distributed Processing Symposium, Colorado, USA, 2005.
[4] Liu Yang, He H C. Multi-unit combinatorial auction based grid resource co-allocation approach//Third International Conference on Semantics, Knowledge and Grid,Washington, DC, USA, 2007.
[5] Kant U, Grosu D. Double auction protocols for resource allocation in grids//ITCC, Washington, DC, USA, 2005.
[6] Tan Z, Gurd R J. Market-based grid resource allocation using a stable continuous double auction//Proceedings of JSSPP, Texas, USA, 2007.
[7] Ding Ding, Luo S W, Gao Z. A greedy double auction mechanism for grid resource allocation//Proceedings of JSSPP,GA, USA, 2010.
[8] Xia M, Stallaert J, Whinston A B. Solving the combinatorial double auction problem[J]. European Journal of Operational Research, 2005, 164(1): 239-251.
[9] 李立,马晓雷,刘元安. 基于组合双向拍卖的网格资源分配[J].电子学报, 2009, 37(1): 165-169. Li Li, Ma Xiao-lei, Liu Yuan-an. Grid resource allocation based on the combinatorial double auction[J]. Chinese Journal of Electronics, 2009, 37(1): 165-169.
[10] Wang K, Li L, Hausheer D, et al. A trust-incentive-based combinatorial double auction algorithm//2010 IEEE NOMS, Osaka, Japan, 2010: 209-215.
[11] 范小勇,梁樑,古春生. 多回合组合双向拍卖交易机制研究[J]. 系统工程理论与实践, 2005, 25(1): 32-36,48. Fan Xiao-yong, Liang Liang, Gu Chun-sheng. A study on multi-round combinatorial double auction bargaining mechanism[J]. System Engineering Theory and Practice, 2005, 25(1): 32-36,48.
[1] 尼颖升,孙启鑫,马晔,徐栋,刘超. 基于空间网格分析的多箱室波形钢腹板组合梁腹板剪力分配[J]. 吉林大学学报(工学版), 2018, 48(6): 1735-1746.
[2] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[3] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[4] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[5] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[6] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!