吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 877-884.doi: 10.7964/jdxbgxb201304006
顾斌1, 陈志坚2, 陈欣迪3
GU Bin1, CHEN Zhi-jian2, CHEN Xin-di3
摘要:
基于苏通大桥辅助航道桥运营期两年内实测的温度、气象和应变数据,对混凝土箱梁的有效温度与应变进行了分析。结果表明:箱梁的尺寸越小,有效温度变化的范围越大,设计基准期为100年的墩顶梁和跨中箱梁的有效温度范围分别为(-4.3 ℃,37.3 ℃)和(-6.1 ℃,42.2 ℃);大气前3天的最高(低)平均温度与箱梁有效温度的相关性系数高达0.97,通过回归分析得到的箱梁有效温度与大气前3天平均最高(低)温度的关系式,可用来对箱梁有效温度进行预测。最后提出了修正混凝土收缩、徐变效应的方法,并使用箱梁有效温度对主墩墩底混凝土的竖向相对应变和支座截面箱梁顶板混凝土的纵向相对应变进行了预测。
中图分类号:
[1] 方志,汪剑. 大跨预应力混凝土连续箱梁桥日照温差效应[J]. 中国公路学报,2007,20(1):62-67. Fang Zhi, Wang Jian. Sun light thermal difference effect on long-span PC continuous box girder bridge[J]. China Journal of Highway and Transport, 2007,20(1):62-67.[2] 雷笑,叶见曙,王毅,等. 基于长期观测的混凝土箱梁温度与应变分析[J].江苏大学学报:自然科学版, 2010, 31(2):230-234,239. Lei Xiao, Ye Jian-shu, Wang Yi, et al. Analysis of concrete box-girder temperature and strain based on long term observation[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(2):230-234,239.[3] 肖建庄,宋志文,赵勇,等. 基于气象参数的混凝土结构日照温度作用分析[J]. 土木工程学报,2010, 43(4):30-36. Xiao Jian-zhuang, Song Zhi-wen, Zhao Yong, et al. Analysis of solar temperature action for concrete structure based on meteorological parameters[J]. China Civil Engineering Journal, 2010, 43(4):30-36.[4] Larsson O, Thelandersson S. Estimating extreme values of thermal gradients in concrete structures[J]. Materials and Structures, 2011, 44(8):1491-1500.[5] Roeder C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1):12-19.[6] Lucas J M, Louis C, Virlogeux M. Temperature in the box girder of the normandy bridge[J]. Structural Engineering International, 2005, 15(3):156-165.[7] Soukhov D. Representative values of thermal actions for concrete bridges[J]. Progress in Structural Engineering and Materials, 2000, 2(4):495-501.[8] Lei Xiao, Jiang Han-wan, Ji Bo-hai, et al. Research in effective temperature difference of concrete box girder bridge//The 2011 International Conference on Electric Technology and Civil Engineering, Piscataway, United States: IEEE Computer Society, 2011: 2494-2497.[9] Mondal P, Dewolf J T. Development of computer-based system for the temperature monitoring of a post-tensioned segmental concrete box-girder bridge[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(1):65-77.[10] JTG D602.公路桥涵设计通用规范[S]. 2004.[11] Lueas J M, Berred A, Louis C. Thermal actions on a steel box girder bridge//Proceedings of the Institution of Civil Engineers, Structures and Buildings London, England:Thomas Telford Services Ltd, 2003: 175-182. |
[1] | 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711. |
[2] | 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044. |
[3] | 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054. |
[4] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[5] | 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. |
[6] | 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126. |
[7] | 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136. |
[8] | 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147. |
[9] | 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759. |
[10] | 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464. |
[11] | 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471. |
[12] | 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093. |
[13] | 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770. |
[14] | 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451. |
[15] | 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458. |
|